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Abstract—Automated Vehicles are an integral part of In-
telligent Transportation Systems (ITSs) and are expected to
play a crucial role in the future mobility services. This paper
investigates two classes of self-driving vehicles: (i) Level 4&5
Automated Vehicles (AVs) that rely solely on their on-board
sensors for environmental perception tasks, and (ii) Connected
and Automated Vehicles (CAVs), leveraging connectivity to
further enhance perception via driving intention and sensor
information sharing. Our investigation considers and quantifies
the impact of each vehicle group in large urban road networks
in Europe and in the USA. The key performance metrics
are the traffic congestion, average speed and average trip
time. Specifically, the numerical studies show that the traffic
congestion can be reduced by up to a factor of four, while the
average flow speeds of CAV group remains closer to the speed
limits and can be up to 300% greater than the human-driven
vehicles. Finally, traffic situations are also studied, indicating
that even a small market penetration of CAVs will have a
substantial net positive effect on the traffic flows.

Index Terms—ITS, CAV, AV, SUMO, Simulation Framework,
Urban Mobility.

I. INTRODUCTION

By 2025, autonomous vehicles requiring little or no in-
teraction with a human driver (Autonomy Level 4 and 5,
respectively) are expected to hit the roads worldwide [1].
Both the European Commission’s C-ITS initiative and the
U.S. Department of Transportation estimate that automated
driving will contribute to reducing traffic jams, take advan-
tage of the full capacity of road networks, and improve the
safety of vulnerable road users [2], [3].

Automated vehicles, equipped with sensors and Vehicle-
to-Everything (V2X) communication interfaces, will share
their collected information and driving intentions with the
surrounding environment. Access to such information can
enable a cooperative element among the vehicles, enhance
the traffic efficiency by making faster decisions, and adapt
to the different traffic conditions [4]. Based on their com-
munication capabilities, vehicles can be classified either
as: (i) Autonomous Vehicles (AV), providing autonomous
features solely based on the information collected by the ve-
hicle itself, (ii) Connected and Autonomous Vehicles (CAVs),
capable of both collecting and sharing this information with
the surrounding environment.

In this paper, we investigate the impact of both AVs
and CAVs on large urban road networks. Our investigation
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focuses on the traffic flow, the network capacity, the average
speed, and trip time achieved under different traffic load
conditions. As our baseline measurement, we consider
traditional Human-Driven (HD) vehicles.

The benefits of AVs and CAVs have been demonstrated
in the past. For example, authors in [5] found that a
purely CAV scenario could improve the highway capacity by
300%, while purely AV scenarios show relatively indifferent
performance. When AVs are assigned a dedicated lane on
a highway, the road throughput is enhanced significantly,
as shown in [6]. These works, even though they reflect
the benefits of AVs and CAVs, they do not consider ur-
ban traffic. In our approach, we will focus on the more
demanding urban scenarios. This was the case in [7], where
a 40% increase was observed in the city traffic flow, as
perceived at a single-intersection scenario. Similarly, in [8],
the authors observed a 16% improvement in the maximum
urban traffic flow under an artificially generated grid-like
network, considering a 100% AV adoption rate, and a 25%
benefit on a small-scale real-world map. However, both
works did not consider the differences that may arise
from the unique layouts of the different real-world cities.
Furthermore, neither the cooperation between the vehicles
nor the different congestion levels were taken into account.
To the best of our knowledge, no work in the literature
shows the benefits of both AVs and CAVs under large-scale
urban environments and different city layouts.

With these regards, this paper aims to fill this gap,
providing an extensive performance investigation of fleets
of AVs and CAVs in large and realistic road networks. In par-
ticular, our investigation assesses the impact of the unique
vehicle characteristics on the different road layouts and
traffic congestion levels over five European and American
cities and 165km of total road length per-road network.
Finally, the impact of the lack of connectivity on CAV-based
scenarios is also considered, showing the importance of V2X
communication links as the traffic demand is increased.

The rest of this paper is organized as follows. Sec. II
presents the considered experimental setup and assump-
tions around the dynamics of HD vehicles, AVs, and CAVs.
Sec. III describes the processing of the cartographic data
and how the mobility traces were generated for all vehicles.
The simulated scenarios and our findings are discussed in
Sec. IV. Finally, in Sec. V, we draw our conclusions.



II. SYSTEM DESCRIPTION

Consider an urban area consisting of several buildings,
areas of foliage and vegetation, and an extensive road
network. A vehicle on the road coexists with its surround-
ing vehicles, pedestrians, cyclist, and all means of public
transport. A human driver usually observes the surrounding
environment and reacts accordingly to any changes (for e.g.,
a traffic light turns red, or reaches a junction and has to
yield the right-of-way). On the other hand, an AV relies on
its on-board sensors to react to the same changes. Finally,
a CAV exchanging sensor data and driving intentions is
capable of artificially generating a “birds-eye” view of the
surrounding environment, perform smoother cooperative
maneuvers on the road, and plan its long-term route in a
more sophisticated fashion.

The reaction time of AVs is considerably shorter when
compared to humans. Studies on existing Autonomy Level
2 and 3 vehicles [9], showed that AVs can react on average
in ~0.66 s while humans require over 0.9s or even 1.5 s,
in impaired scenarios. Moving towards full autonomy and
CAVs, these numbers are expected to decrease even further.

When studying the impact of AVs and CAVs, all the above
interactions and distinct characteristics should be taken
into account. For our evaluation, we utilized the Simulation
of Urban Mobility (SUMO) traffic generator [10]. SUMO is
capable to microscopically model and control each vehicle
and traffic light and provides a flexible framework for
generating finely-tailored traffic management scenarios.

A developed MATLAB framework accompanies our in-
vestigation. Our framework is publicly available under
https://github.com/v2x-dev/sumoCAVs repository. It
can be used to automate the simulation steps, enables the
easier generation and validation of different scenarios and
works in two phases. At first, we generate the required struc-
tures and files for SUMO, based on several user-defined
parameters. Later, using TraCI4Matlab framework [11], the
different scenarios are executed in a parallelized fashion.
The generated data are logged as MAT-files and can be
processed by the provided scripts. More details about the
provided capability can be found in the next sections.

A. The Car-Following Model

In the field of transportation engineering, a traffic flow is
defined as the study of the interactions between travelers
(for e.g., vehicles, pedestrians, cyclists, etc.) and the road
infrastructure network (e.g., traffic lights, signage, etc.).
A car-following model describes how vehicles follow one
another and interact on a roadway. In this paper, we refer
to the Intelligent Driver Model (IDM) [12] as our chosen
car-following model, for all the different vehicle types (HD,
AV, CAV).

Comparing IDM to other car-following models (for e.g.
Gipp’s [13] and Krauss [14] models), it better represents the
macroscopic reality. Authors in [15] showed that under a
steady-state (using a calibrated model for each scenario),
IDM achieves lower traffic speed errors and better describes

the road capacity and vehicle density. Microscopically, IDM
still outperforms the above-mentioned models. As reported
in [16], IDM generates more realistic vehicle trajectories
when crossing an intersection. Also, IDM is capable of
simulating flow conserving inhomogeneities (for e.g., on-
/off-highway ramps, lane closing, etc.), the coexistence of
moving localized vehicles clusters and clusters pinned at
road inhomogeneities, as well as congested traffic behav-
iors, all use-cases that can be concurrently observed on
large-scale city-wide scenarios [12]. For the above reasons,
IDM was chosen as the most suitable model for our study.

B. Uniform Scenario Generation for all Cities

As discussed in [17], to achieve a true-to-life representa-
tion of the real-world when generating a scenario in SUMO,
different variables should be taken into consideration.
These are the demographic information and buildings from
specific areas, information about the multimodal public
transport system for each city, parking spaces, available
pedestrianized streets or cycling paths, etc. However, given
the large-scale nature of our investigation, many of this
information is not available for some or all our cities-of-
interest. Also, the above information is city-specific and
varies between the scenarios.

Introducing these variables increases the complexity of
isolating the effect of the city layout on the different
traffic flows. Therefore, for our investigation, we consider
a uniform way for generating the different scenarios, still
introducing real-world behaviors (for e.g., choosing left-
or right-hand traffic). What is more, considering different
vehicle densities in each city, we can simulate different
traffic patterns, for example, low traffic conditions (during
the evening hours) or heavy traffic conditions (rush hours).
In the next section, we describe in more detail the way that
each scenario was generated.

III. SCENARIO GENERATION AND EXECUTION

A SUMO scenario requires a set of files describing the
scenario parameters. Investigating a scenario requires sev-
eral steps. Our framework is capable of automating the pro-
cess, starting from Step 2. Briefly, the steps are as follows:
(i) Download a map from OpenStreetMap (OSM) [18], (ii)
Convert the map into a SUMO network file (this is described
as a road network in SUMO), (iii) Based on the user-defined
vehicle characteristics, generate the different vehicle type
files for each scenario, (iv) Generate the mobility traces, (v)
Based on the road network and mobility traces, generate
the traffic light adaptation and coordination files, (vi) The
scenario is executed, and the data are saved in a MATLAB-
file format. In the post-processing phase, the user can
choose to generate all the results. The following sections
describe each step in more detail.

A. Map Conversion and Traffic Light Generation

Our study starts by choosing the appropriate maps from
OSM [18] and importing them into SUMO. An OSM map



(.osm file) stores in an XML-formatted file all the carto-
graphic details of an area such as the road types (e.g.,
bus lanes, regular roads, pathways, etc.), buildings, foliage,
traffic lights, etc. Even though the chosen cities are well-
mapped in OSM, there are several flaws that should be con-
sidered when converting a map with netconvert tool [10].

At first, many streets (called edges in SUMO) are con-
sidered as legitimate U-turns, a behavior not common in
the real-world. Disabling that feature (--no-turnarounds),
enables a more normal driving behavior and promotes
through-traffic. Furthermore, --roundabouts.guess was used
to obtain the correct priorities for all roundabouts. Most im-
ported OSM maps do not provide information about high-
way on- and off-ramps. To correct this behavior, the ramp-
guessing was enabled using --ramps.guess. Overtaking, that
is by default disabled in SUMO, was introduced using --
opposites.guess and --opposites.guess.fix-lengths attributes.

OSM maps usually contain information about the traffic
lights positions. However, these details could either be
missing or be inaccurate. To introduce a unified and solid
traffic light system, we start by guessing the positions of the
missing traffic lights (using --tls.guess). The coordination
between the traffic lights in close proximity (< 20m) is en-
hanced by clustering them (--tls.join and --tls.guess-signals).
Finally, oddly misplaced traffic lights are discarded using
--tls.discard-simple and actuated traffic light technology is
introduced, using --tls.default-type actuated that adapts the
cycle phases based on the traffic demands

Finally, nowadays, humans and vehicles communicate
either using traffic lights or with unspoken interactions. AVs
and CAVs will rely on their on-board sensors and knowledge
received from the surrounding environment to detect and
predict pedestrian behavior. SUMO is not capable of pro-
viding such interaction. Therefore, only the roads that allow
vehicle traffic was chosen for our investigation (using --
keep-edges.by-vclass), and pedestrians were not considered.

B. Generation of the Vehicle Type Distributions

Based on a given network file, we can generate the
mobility traces for all vehicles types, containing all the
parameters that describe the vehicles behavior. The chosen
parameters for our experimentation can be found in Table I.
As described in Sec. II-A, IDM was chosen as the car-
following model (named as carFollowModel in SUMO) for
all the vehicle types and needs to be fine-tuned for the
different vehicle types (either human or computer-driven).

AVs and especially CAVs, are expected to drive in closer
proximity, at faster-pace, and provide increased safety to the
passengers [19]. Of course, the “safe” margins are scenario
dependent [20], and can vary a lot based on parameters
such as the weather, traffic jams, the quality of the road
network, etc. When planning a city nowadays, the chosen
fixed-speed limits represent the appropriate speed for aver-
age conditions. However, it is already a common practice to
apply dynamic speed limit policies when the above param-
eters are changed [20]. For our experimentation, in order to

Table I
VEHICLE TYPE AND MOBILITY TRACE PARAMETERS.

Parameter HD AV CAV

Desired time headway (τ) [21] 1.69 s 0.5 s 0.1 s
Minimum Gap 2.5 m 1.5 m 1 m

Accumulated Waiting Time [19] 300 s Disabled (−1)
Length N(µ= 4.5, σ= 0.2)

Car-Following Model Intelligent Driver Model (IDM)
Acceleration [21] 1.25 ms−2

Deceleration [21] 2.09 ms−2

Acceleration Exponent [19] 4
Departure/Arrival Position Randomly Chosen

Departure/Arrival Lane Best lane/Current Lane
Departure/Arrival Speed Max Allowed/Fastest possible

achieve a homogeneous comparison between the different
road networks, we assume that all the scenarios are under
ideal conditions. This behavior is simulated using a number
of parameters. At first, τ describes the drivers desired time-
headway. Later, the minimum gap between two vehicles is
described by minGap. The speed factor, i.e., speedFactor, is
the multiplier of the speed limit on a road. Decreasing τ and
minGap, while increasing the speedFactor, we can simulate
different types of autonomous vehicles. The erratic behavior
of human drivers of blocking a junction and create a traffic
jam can be modeled using jmIgnoreKeepClearTime. Finally,
the length, the acceleration, deceleration, and acceleration
exponent should be configured for each scenario. More
details about the chosen parameters can be found in SUMO
documentation [10] and our MATLAB framework.

C. Mobility Trace Generation and Traffic Light Adaptation

A typical trace file contains an entry per generated
vehicle and describes several attributes of the trip, these
being: (i) the vehicle type, (ii) the departure time, speed,
edge and lane, (iii) the arrival position/edge, and (iv) all
the intermediate edges that a vehicle will follow during
the trip. Based on the above-mentioned distribution and
network files, and using randomTrips SUMO tool [10], we
can generate the mobility trace file for a given scenario.

Vehicles are periodically added in the simulation queue.
The initial position of a vehicle is chosen at random, from
all the available free positions on the plane (departPos =
random_free). All edges on the map have an equal weight.
By that, we ensure that the vehicles are uniformly spread
around the city. The best available lane is always chosen,
i.e., departLane = best, allowing the vehicle to drive the
longest without the need for changing lanes. Finally, the
insertion speed, i.e., departSpeed = desired, is the maximum
allowed velocity, given by the speed limit multiplied by the
speed factor. That ensures a continues flow of vehicles and
no disruptions in the existing traffic. A random position
is chosen at the departure as the arrival position, i.e.,
arrivalPos = random. A maximum number of vehicles can
be configured or left uncapped. To ensure that a desired
number of vehicles always exists, we forced our generated
traces to be longer than the simulation time. All these
attributes are summarized in Table I.



Table II
REROUTING PARAMETERS FOR CAVS.

Parameter HD AV CAV

Rerouting Device Not Available Available
Adaptation Steps - 60

Adaptation Interval - 1 s
Rerouting Period - 0 s

Knowing the traffic flows, the traffic light cycles can be
adapted to minimize the waiting time at a “red” light.
To do that, we use tlsCoordinator to modify the traffic-
light offsets in a coordinated fashion and tlsCycleAdaptation
to modify the duration of the green phases according to
Webster’s formula, and achieve an actuated-style traffic light
system. By that, the realism of the simulation is increased.
More information about these tools can be found in SUMO
documentation page [10].

D. Wireless Connectivity and Vehicle Rerouting

CAVs, compared to the AVs and HD vehicles, are ca-
pable of exchanging information with the surrounding
environment. Based on that, a CAV can cooperate with
the surrounding vehicles to optimize the traffic flows, and
decrease the overall trip duration and length. To simulate
this behavior, each CAV is equipped with a “rerouting”
device based on a probability distribution. This device re-
computes the CAV route periodically, taking into account
the current and recent state of the traffic, helping CAVs to
adapt their route to the traffic jams.

The rerouting of a CAV is fine-tuned based on a number
of adaptation steps (past simulation steps to be considered)
and an adaptation interval, i.e., the time interval between
two consecutive adaptations. Finally, the rerouting period,
determines how fast vehicles can react to traffic fluctua-
tions. If a value equals or is smaller than the adaptation
interval used, then the reaction of the vehicle is almost
instantaneous. These values can be found in Table II.

E. Execution of the Scenarios

SUMO configuration file (called sumocfg) links everything
described above and contains several simulation parame-
ters. Our MATLAB framework, bidirectionally interacts with
SUMO using TraCI4Matlab framework [11], dynamically
generates the different required files and executes the
SUMO tool commands. Finally, it saves the different states
of the simulation (for e.g., the vehicle positions per time
step) and overall statistics at the end.

The execution of the scenarios needs to be fine-tuned. At
first, the teleportation of vehicles is disabled, setting time-
to-teleport greater than the execution time and disabling
collision.action. By that, we avoid vehicles disappearing
under heavy traffic jam conditions or when they collide (this
being the default SUMO behavior). Also, within a simula-
tion environment, the real reaction time is fundamentally
limited by the simulation step, i.e., step-length. Therefore,
τ, described in Sec. III-B, should always be greater than
the step duration. Finally, in order to guarantee that all the

Table III
SCENARIO CONFIGURATION PARAMETERS.

Parameter Uncapped Capped

Max. No. of Vehicles Uncapped {250 : 250 : 1500}
Insertion Rate (r ) {0.8 : 0.05 : 1}s 0.1 s

Time to teleport 3601 s
Collision action None

Simulation Time 3600 s
Timestep Length 100 ms

Max. Departure Delay 100 ms
Target Distance D 130km

routes generated are up-to-date, we ensure that vehicles
are either added in the simulation on their designated
departure time or are being discarded from the simulation
queue. We do that by setting max-depart-delay equal to
the simulation step. The values for all these parameters are
summarized in Table III.

F. Fluid Bounding Boxes

Given the unique city layouts and road networks, we con-
sider a fluid bounding box that restricts the area-of-interest
for some Key Performance Indicators (KPIs). The reason
behind that is two-fold. At first, we have the abnormal
behavior when a vehicle approaching the map boundaries.
When an OSM map is converted to a SUMO network file,
the connections of the roads close to the edge of the map
might be corrupted. Introducing the bounding box, we can
exclude these results from our evaluation. Furthermore, for
KPIs such as the vehicle density, when investigated and
compared between different scenarios and different city
layouts, it is crucial to refer to a similar road length [22].
Therefore, a suitable metric related to the size of the map,
accounting for the total length of the roads present in a
given area was considered.

For our investigation, we introduced the overall target
distance D of the road network. D takes into account all
the above and is calculated as follows:

D =
∑Sa

s=1 ds ls

a
(1)

where ds is the length of a street s (measured in meters),
and ls is the number of lanes of that street. Also, Sa is
the set of all streets within the area a (measured in km2).
Furthermore, we introduce the map-specific distance D ′.
Starting from the center of the map, we iteratively choose
the next closest road to the map center and add it to D ′. The
iteration stops when D ′ > D , and we remove the last added
edge from D ′. Having D ′, and taking the furthest top-right
and bottom-left coordinates of all the edges and we have
our map-specific bounding box and ensure that roughly the
same road length is enclosed for all the different scenarios.

IV. PERFORMANCE EVALUATION

To investigate the effect of the road layout on the traffic
flows, we chose five different cities, i.e., Manhattan, Paris,
Berlin, Rome, and London. In particular, Manhattan has
a grid-like road network regulated with a large number of



Table IV
LIST OF MAP AREAS USED AND THEIR ROAD NETWORK CHARACTERISTICS.

Parameter Manhattan, USA Paris, FR Berlin, DE Rome, IT London, GB

Centre 73.98585°W,40.75495°N 2.3004°E ,48.875°N 13.3969°E ,52.53645°N 12.5143°E ,41.8823°N 0.1638°W,51.5207°N
Total Road length 168.68 km 160.39 km 161.86 km 167.70 km 168.48 km

Map Size
[
Mx ,My

]
3.776 km × 3.264 km 3.343 km × 2.632 km 3.353 km × 2.955 km 2.985 km × 3.163 km 2.564 km × 2.373 km

Traffic Lights 292 75 19 22 62
Total Junctions 1939 2933 3339 3684 5879

Priority Junctions 594 1134 20 1597 2283
Roundabouts 0 8 1 6 0

traffic lights. Paris and London, follow a loose- and uneven-
grid-like architecture, with a combination of main arteries
and side roads. However, London consists of a vast number
of roads and junctions, while Paris relies on roundabouts to
connect its main arteries. Berlin, on the other hand, has a
spiderweb-like layout with a small number of priority roads.
Finally, the unique characteristic of Rome is the very narrow
roads and increased number of non-vehicle designated
areas that limit the routing options for a driver. For each
city, a map with a road length of ~165 km was chosen
to provide a similar simulation environment across the
different scenarios. Table IV summarizes the static network
information for all maps.

To understand the unique characteristics of the different
layouts and the improvement that AVs and CAVs may bring,
we focused on two different use-cases. The first one is an
uncapped scenario, where the number of vehicles per time
slot is not restricted. Five different insertion rates r were
considered that regulate the number of vehicles inserted in
the simulation time – this means that SUMO adds a new
vehicle into the simulation every r second. On the other
hand, we have capped scenarios. For that, the number of
vehicles is restricted by a maximum threshold value. When
this number is reached, a new vehicle is added in the
simulation only when one of the existing vehicles arrives at
its destination and is removed. The traffic flows start from
light traffic (250 vehicles) and go up to a severe traffic jam
(1500 vehicles). All the parameters for these two use-cases
can be found in Table III. As discussed in Sec. III-C, the
actuated traffic lights can enhance the traffic flows in the
city. Therefore, for all the scenarios, actuated traffic lights
were considered.

We start with the uncapped scenario (Figs. 1-4). For
Paris, we observe that for both HD vehicles and AVs, as
time progresses, the number of vehicles in the scenario
is increased. For faster-paced insertion rates, it is shown
that the number of AVs is slightly reduced compared to
HD vehicles. This is because the enhanced features of an
AV (better speed, smaller inter-vehicle distances) alleviate
the traffic congestion, and therefore, vehicles arrive at their
destination faster. CAVs, however, significantly outperform
the other two. This is due to their rerouting capabilities.
Having an advanced knowledge about the surrounding en-
vironment, they can on-the-fly change their route towards
their destination, balancing the traffic on the city. Results

Figure 1. Number of vehicles for the uncapped scenario for Paris, as a
function of time and different insertion rates.

for Rome and Berlin followed a very similar behavior with
Paris. The above clearly shows the benefits of connectivity,
these being the decreased trip time and traffic congestion.

For London (Fig. 2), the difference between CAVs and
AVs/HD vehicles is less significant. As described before,
London has an increased number of intersections com-
pared to Paris. Vehicles of all types, forced to follow the rules
on the road, suffer from decreased average speed and thus
increased average journey time. Therefore, the margin of
improvement in that scenario is decreased. For Manhattan
(Fig. 3), the effect of the layout and the increased number of
traffic lights, is even more noticeable, with the gap between
the different vehicle types being minimized. However, still,
CAVs manage to operate marginally better. Introducing “vir-
tual” traffic lights and coordinating the vehicles in smarter
ways (for e.g., using a centralized approach), can signif-
icantly enhance the results for these grid-like scenarios.
Again, the exchange of information between the vehicles
and the infrastructure networks will be vital for that.

In Fig. 4, the maximum number of vehicles as a function
of the insertion rate is shown. As expected, for faster-paced
insertion rates, the overall number of vehicles increases.
This is the case for all scenarios, except Manhattan, where
the city layout and the number of traffic lights, limit the
traffic flow significantly. Overall, from the above, we observe
that the unique characteristics of CAVs and the “bird-
eye” knowledge they can acquire, decreases the number of
vehicles on the road improving the traffic flow.

Figs. 5-7 show the results for the capped scenarios.
For all these figures, we consider the fluid bounding box
introduced in Sec. III-F. Fig. 5 presents the average speed
as a function of the maximum number of vehicles. Starting
with London, we observe that HD vehicles and AVs have a



Figure 2. Number of vehicles for the uncapped scenario for London, as
a function of time and different insertion rates.

Figure 3. Number of vehicles for the uncapped scenario for Manhattan,
as a function of time and different insertion rates.

very similar performance. On the other hand, the unique
characteristic of CAVs significantly improve their average
speed. Having advanced knowledge about the traffic jams,
they can strategically avoid them, significantly enhancing
the overall traffic flow. Results for Rome and Paris are very
similar to the London scenario, so they not be presented
due to the limited space.

A similar performance is observed in Berlin as well. Due
to the decreased number of traffic lights and road junctions,
the improvement margin is decreased compared to London.
Again, as before, the average speed gain is decreased as
the number of vehicles is increased, and CAVs slightly
outperform the other two vehicle types. However, this is
not the case for Manhattan. For that scenario, the benefit
of CAVs is amplified as the number of vehicles increases.
The increased number of traffic lights and junctions cause
severe traffic jams in the city. Having the ability to avoid
them can significantly reduce the speed loss, and the
continuous accelerate/decelerate in traffic.

Fig. 6 presents the average trip time per vehicle as a func-
tion of the vehicle density. As expected, when the average
speed increases, the average trip duration time is decreased.
This is evident in the results from Manhattan that follow an
inversely proportional behavior compared to Fig. 5. Moving
on to Rome, an initial observation shows that the trip dura-
tion follows an upward trend when the number of vehicles
increases for all types of vehicles. However, this is not the
case for all the different maximum number of vehicles. For
e.g., for 1000 vehicles, the trip time is decreased compared
to the 750 case. This is because of the users equilibrium on
the road, also known as Braess’s paradox. Braess’s paradox
describes that for the same number of vehicles, if one more

Figure 4. Number of vehicles for the uncapped scenario for Paris and
Manhattan, as a function of the different insertion rates.

Figure 5. Capped scenario for Manhattan, London and Berlin. Average
speed as a function of the number of vehicles.

road is added, it is possible to impede the traffic flow. In our
case, where the length of the road is constant, we observe a
similar behavior when we increase the number of vehicles
on the road. Vehicles microscopically interacting on the
road (change lanes, give right-of-way at intersections, etc.)
and selfishly choose their route can, in some cases, reduce
the overall performance. Similar behavior can be observed
in Paris and London as well, always having the CAVs to
required the minimum average trip time. This phenomenon
is even more observable in Berlin, where the road layout
and the characteristics of AVs lead them to achieve better
performance compared to the CAVs.

Finally, the V2X links formulated are not always reliable,
or CAVs may be outside of the coverage road of an RSU.
To represent that behavior in our investigation, we reduced
the re-routing probability of each CAV per simulation step.
The idea is that when a vehicle could not formulate a
link or is in outage, it does not have knowledge about the
surrounding environment, thus cannot be re-routed on-
the-fly. The results for that, and more specifically for the
city of Berlin, are presented in Fig. 7, showing the average
speed as a function of the different re-routing probabilities.
As before, the increased traffic congestion always decreases
the average speed. However, as traffic congestion increases,
reliable connectivity plays a crucial role. For example, when
vehicles are capped at 250, we see that with just 50% of
the vehicles capable of formulating communication links,
the average speed significantly increases. However, for more
congested scenarios, we observe the demand for better
connectivity. For example, more than 75% should be able to
be connected when we have a capped scenario with 1250



Figure 6. Capped scenario for Manhattan, Rome and Berlin. Average trip
time as a function of the number of vehicles.

Figure 7. Average speed as a function of the re-routing probabilities for
Berlin and different maximum number of vehicles.

CAVs, to observe a noteworthy benefit in the average speed,
and later in the traffic flows.

V. CONCLUSIONS

In this paper, we investigated the impact of AVs and
CAVs on the traffic flows in future cities. Our investigations
focused on the demanding urban city layouts of five large-
scale road networks. Starting with the data processing
pipeline, we presented a way of comparing the diverse
city layouts and observed their effect on the different
types of vehicles, ensuring fair and informative numerical
results. Our performance investigations considered several
KPIs related to the traffic flow efficiencies (traffic demand,
average speed, average trip time). Our results show that
CAVs can significantly benefit the traffic flows, decreasing
the average trip times by up to three times under heavy
traffic conditions, and hence reducing the traffic conges-
tion. These results complement the existing literature which
considered other types of road networks and strengthen
the expectations for CAVs and the benefits they will bring.
These benefits are potentially even greater, for the case
where the trip planning tasks are centralized, which we
leave as the future work.
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