
Reliable IoT Firmware Updates: A Large-scale
Mesh Network Performance Investigation

Ioannis Mavromatis∗, Aleksandar Stanoev∗, Anthony J. Portelli∗, Charles Lockie†,
Marius Ammann†, Yichao Jin∗, and Mahesh Sooriyabandara∗

∗ Bristol Research and Innovation Laboratory (BRIL), Toshiba Europe Ltd., Bristol, UK
† Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK

Emails: {Ioannis.Mavromatis, Aleksandar.Stanoev, Yichao.Jin}@toshiba-bril.com

Abstract—Internet of Things (IoT) networks require regular
firmware updates to ensure enhanced security and stability. As
we move towards methodologies of codifying security and policy
decisions and exchanging them over IoT large-scale deploy-
ments (security-as-a-code), these demands should be considered
a routine operation. However, rolling out firmware updates
to large-scale networks presents a crucial challenge for con-
strained wireless environments with large numbers of IoT devices.
This paper initially investigates how the current state-of-the-
art protocols operate in such adverse conditions by measuring
various Quality-of-Service (QoS) Key Performance Indicators
(KPIs) of the shared wireless medium. We later discuss how
Concurrent Transmissions (CT) can extend the scalability of
IoT protocols and ensure reliable firmware roll-outs over large
geographical areas. Measuring KPIs such as the mesh join time,
the throughput, and the number of nodes forming a network, we
provide great insight into how an IoT environment will behave
under a large-scale firmware roll-out. Finally, we conducted our
performance investigation over the UMBRELLA platform, a real-
world IoT testbed deployed in Bristol, UK. This ensures our
findings represent a realistic IoT scenario and meet the strict
QoS requirements of today’s IoT applications.

Index Terms—IoT; Bluetooth; Large-scale Testbed; Firmware
Update; IEEE 802.15.4;

I. INTRODUCTION

Internet of Things (IoT) has become synonymous with
everyday computing. It provides the ability for interconnected
devices to exchange information over a wireless medium
without human intervention [1]. IoT systems and platforms are
already utilised in home environments for voice assistants and
security systems to energy, heating, and lighting control [2].
Moving forward, IoT is expected to impact commercial
applications in a number of areas, including Industry 4.0,
connected vehicles and smart grids [3].

Operational stability and security are two critical factors of
every IoT network and application. Both can be achieved with
frequent firmware roll-outs [4]. However, autonomous firmware
update without physical proximity is susceptible to adverse
wireless medium conditions, can drastically increase the roll-
out times, or lead to downtimes. Interconnected IoT devices
make it possible for billions of nodes to exchange information
and transform raw data into meaningful inferences. This was
made possible due to the standardisation of IoT communication
protocols. These constrained devices, having limited resources,
can connect and form huge distributions of networks [5]. Such
networks can ensure massive firmware roll-outs over large
geographical areas. However, the current IoT protocols were

initially designed to work within home environments [5] and
do not scale well in city-wide deployments [6].

The contribution of this paper is two-fold. Initially, we
investigate the requirements for such a firmware roll-out.
Based on that, we explore the coexistence, cooperation, and
interoperability of IoT communication protocols in a large-scale
city-wide deployment. We intend on showing how different
protocols perform within a real-world environment and their
limitations as the number of devices increases. We also
discuss how Concurrent Transmissions (CT) [7] can extend the
scalability of IoT protocols. Well-established IEEE 802.15.4
protocols such as the Carrier Sense Multiple Access with
Collision Avoidance (CSMA-CA) [8] have been widely tested
and implemented in the IoT world. For our investigation, we
use CSMA-CA as a benchmark. As a second step, we conduct
a large-scale performance investigation using a CT-based
implementation [7]. Our analysis shows that CT can increase
the current system performance in a real-world environment,
especially when the number of interconnected devices increases.

Our performance investigation was based on Urban Multi
Wireless Broadband and IoT Testing for Local Authority
and Industrial Applications (UMBRELLA). UMBRELLA is
currently deployed in Bristol, UK, and is a large-scale urban
testbed. Owing to its size and versatility, it can be used
as a playground for wireless experimentation and assessing
Key Performance Indicators (KPIs) for large-scale urban IoT
scenarios. Our investigation focuses on various KPIs like mesh
creation times, reliability and data throughput, linking them
with an example application of a large-scale firmware roll-out.

The rest of the paper is organised as follows. Sec. II describes
the system architecture, our scenario, and the experimental
setup. Sec. III presents the workflow and provides a better
insight on the implementations and the large-scale evaluation.
Our comparative results can be found in Sec. IV. Finally, the
paper summarises our investigation in Sec. V.

II. SYSTEM DESCRIPTION

Our experimentation is based on a realistic IoT scenario.
We consider a use-case where a firmware update is rolled
out to a wide-reaching network of IoT devices. This can be
the case when, for example, a security vulnerability is found,
subsequently, a patch is introduced, and the new firmware is
reflashed on all the wireless IoT interfaces. Within such a
scenario, the downtime on the network should be minimised
while ensuring the new firmware reliably reaches all the

InitiatorsConsumers

Consumers

Fibre Backbone Link
Wireless Mesh Link

Firmware
Binary Firmware

Server

WiFi Backbone Link

Inventory
—————————
Node | ID1 | MAC1
Node | ID2 | MAC2
Node | ID3 | MAC3
Node | ID1 | MAC4

…

Fig. 1. A high-level system architecture and its implementation on UM-
BRELLA. The nodes share the firmware binaries over the wireless mesh
network. The initiators are reachable from the server via a backbone link.

destination nodes without significant delays. To emulate that,
a 100 kB file is used to represent the firmware binary. This is
roughly the size of an uncompressed binary file for the Nordic
Semiconductor nRF52840 [9] System on Chip (SoC). Data
compression could be used to reduce the size of the payload
substantially. However, this would require the receiving nodes
to perform the decompression. Such functionality is somewhat
onerous when considering the limited computing capacity of
IoT devices, particularly if they are battery-powered. Therefore,
the uncompressed file size was chosen for our experimentation.

We assume that a firmware server stores the firmware images
and manifests, and distributes them to the IoT devices (as in
Fig. 1). The firmware binary is sent to all firmware consumers
over a wireless mesh link. What is more, the server has direct
access to the roll-out initiators (source nodes) and initiates the
deployment. To do so, a list of all active consumers is always
stored on the server-side and can be periodically updated and
maintained. In the following sections, we describe the wireless
protocol stacks used for our investigation.

A. IEEE 802.15.4, Bluetooth and the Different PHYs

Bluetooth Low Energy (BLE) and Low Rate Wireless
Personal Area Networks (LR-WPANs) (IEEE 802.15.4) have
emerged as wireless communications technologies of choice in
many IoT applications. We utilise both during our investigation.
The most recent version (BLE 5) supports four PHYs that
largely differ in terms of data rate and robustness [10], i.e.
2 Mbps, which doubles the nominal throughput of the original
1 Mbps PHY, and two coded PHYs with coding rates of 1/2
and 1/8 (i.e., the 500 Kbps and 125 Kbps respectively). The
IEEE 802.15.4 supports a datarate of 250 Kbps in the 2.4 GHz
frequency band and up to 40 Kbps at the sub-GHz one. For
our experimentation, we will use all four PHYs from BLE and
the 250 Kbps PHY for IEEE 802.15.4.

Both IEEE 802.15.4 and BLE operate in the global un-
licensed ISM band of 2.4 GHz. The same frequency band
is also used by wireless technologies such as IEEE 802.11.
Furthermore, IEEE 802.15.4g operates in the sub-GHz fre-
quency band as well (868 MHz to 868.6 MHz in Europe and
902 MHz to 928 MHz in North America). Our experimentation
will focus on the 2.4 GHz frequency band. The above result
in a cross-technology interference that affects the Quality-of-
Service (QoS) of the network, particularly the reliability and
latency that could lead to application failures. The appropriate
physical layer should be considered when developing an IoT
application to ensure the highest QoS. The impact is even more
prominent in the case of CT-based communications [11].

B. Carrier Sense Multiple Access with Collision Avoidance
CSMA-CA is a random access protocol and works by

sensing the channel before transmitting to avoid collisions.
When the channel is occupied, it waits for a variable amount
of time (back-off period) before checking again. Should a
collision occur, the back-off period is increased to avoid
the next packet also colliding [12]. The main advantage
of CSMA-CA is its simplicity, as it does not require time
synchronisation, scheduling between nodes, or the need to
wait to join a network. However, as the number of nodes
increases, it becomes saturated, and collisions become more
likely. Finally, CSMA-CA operates on a predefined fixed
frequency, thus is susceptible to environmental interference
from nearby transmitters operating on the same or adjacent
channels in the ISM band (such as WIFI).

For our experiments, we use CSMA-CA with Routing
Protocol for Low-Power and Lossy Networks (RPL) [13].
RPL is an optimised routing protocol for wireless networks
susceptible to packet loss. The routing tables are maintained
as a Destination-Oriented Directed Acyclic Graph (DODAG).
Each node is assigned a rank that increases as we move away
from the root node. Two modes are supported, i.e. storing and
non-storing modes. For the storing mode, routing tables are
stored on each node, imposing a significant memory footprint
in large networks and being hard to maintain consistency. For
the non-storing mode, IPv6 source routing is employed. This
means that routing tables are not stored in the nodes but are
embedded in the source routing header. In larger networks with
many hops, this can lead to increased header size.

While using the IEEE 802.15.4 channel, there is a limit to
how much data can be sent. Researchers in [14], introducing
various modifications in the Contiki stack, reliably achieving
up to 45 Kbps with a CSMA-CA channel, using only ten
devices. However, as described, increasing the load to 100 Kbps
introduces large latencies and significant packet loss. For our
implementation, a standard CSMA-CA stack is considered,
thus the throughput is expected to be less than that.
C. Concurrent Transmissions and Synchronous Flooding

CT is the concept that nodes synchronously transmit in-
contention with their neighbours. Synchronous Flooding (SF)
builds on the idea of CT, and it can support one-to-all
communication within a single flood, minimise the latency
and enhance reliability. Its time-synchronised nature can
help decouple network synchronisation from other network
processes. An example of SF-based protocol is Atomic [7],
which showed great results in terms of reduced latency, better
reliability and energy efficiency on small testbeds. Finally,
Atomic supports Multicast Protocol for Low-Power and Lossy
Networks (MPL) and will be the SF protocol of use.

During an Atomic period ∆SF , a packet is flooded across
the whole network. Each ∆SF is partitioned into slots. The
maximum number of slots (MAX SLOTS), and the maximum
number of transmissions (MAX TX), are configured at the
start of each flooding. A node transmits a packet at the start
of the Atomic period to all nearby listening devices. Then,
all devices that successfully received the packet re-transmit it
alongside the source node. This repeats until each node has

Fig. 2. Example of SF used in AtomicSDN. Back-to-back transmissions flood
the network with minimal latency. The MAX TX and MAX SLOTS values
are a trade-off between latency, and greater temporal/frequency diversity.

resent the packet MAX TX times. With each re-transmission,
the data spread to exponentially more nodes. An example of
the above can be seen in Fig. 2. Starting from the initiator, a
node transmits a packet repeatedly until slot MAX TX. Then,
all others receive the packet and relay that during the next slot
to all the forwarding nodes. More information about Atomic
can be found in [7].

With such an approach, nodes receive the same symbol
from multiple transmitters. This results in greater reliability
for the whole network. Facilitating the propagation of control
messages across the network in a flood and within dedicated
control timeslots, Atomic allows an operation without the
knowledge of the topology and benefits from the spatial and
temporal diversity inherent within flooding protocols. Finally,
Atomic uses channel hopping to increase performance, which
avoids sources of interference on a fixed frequency and stops
the Atomic flood from saturating one channel for too long.
D. UMBRELLA Testbed and Network Setup

As mentioned, UMBRELLA testbed [15] was used for
our evaluation. UMBRELLA supports various IoT-related
applications and use-cases. It allows the users to develop
different applications and deploy them as containers on the
provided edge nodes (UMBRELLA nodes). The applications
supported range from air quality monitoring, street light
maintenance, swarm robotics, private 5G for warehousing,
logistics, and large-scale over-the-air wireless experimentation.
The large-scale wireless testbed was the particular functionality
that we utilised for our performance investigation.

UMBRELLA consists of ~200 nodes, installed on public
lampposts and buildings, spread across South Gloucestershire
region in the UK. The core UMBRELLA testbed is installed
across a ~7.2km stretch of road (Fig. 3). Each node anno-
tated in Fig. 3 is equipped with ten sensors (e.g., Bosch
BME680, accelerometers, microphones, etc.) and seven network
interfaces. The two interfaces used for experimentation are a
Nordic Semiconductor nRF52840 [9] and a Texas Instruments
CC1310 [16]. Our investigation was based on nRF52840. Two
more interfaces (WiFi and fibre one) are used for backbone
connectivity. Finally, all applications are supported by a unified

Fig. 3. The UMBRELLA network. All nodes are installed on public lampposts
across a road of ~7.2km. The colors represent the nodes connectivity, i.e. green
is fibre connected, blue is WiFi connected, and purple is fibre connected and
can act as a LoRa gateway too. The red node is our experiment source node.

Fig. 4. Umbrella Node on a lamppost, with its exploded view.

backend implementation. The developed platform provides the
required messaging interfaces and protocols and some high-
level APIs that an end-user can leverage to send requests,
collect log files, or process the data and visualise them.

Between the nRF52840 interface and its dipole antenna
exists a Skyworks RF Front-End Module [17], integrating a
Low Noise Amplifier (LNA) and Power Amplifier (PA). This
results in 22 dB of TX power gain, and increases RX sensitivity
up to 6 dB, approximately doubling the range of a typical
IoT device [17]. Fig. 4 shows an Umbrella node attached to
a lamppost. Each rhombus segment contains custom PCBs,
all connected to a main processing unit (Raspberry Pi 3b+
Compute Module [18]). The UMBRELLA Raspberry Pi runs
Raspbian GNU/Linux 10 (buster) and a custom kernel based
on ver. 4.19.95-v7+. Finally, the three dipole antennas seen
in Fig. 4 are for the 2.4 GHz nRF52840 (left), the sub-GHz
CC1310 (middle), and the 2.4 GHz WiFi (right) interfaces.

III. LARGE SCALE EXPERIMENTS

As shown in Fig. 1, all firmware binaries are exchanged
via the wireless mesh network (the nRF52840 interface in our
case). Furthermore, all nodes are also accessible via a backbone
link (WiFi or fibre), used for data collection, monitoring, and
experiment execution purposes. The dedicated backbone link
enhances the: 1) results collection without interference or
disruption of on-going experiments, 2) available bandwidth
to support large scale multi-user parallel experiments. At the
beginning of each experiment, all nodes are assigned a unique
ID and a role, i.e., source or receiver. The source node is the
roll-out initiator (as described in Sec. II). Only a single node is
assigned this role. The receivers act as the firmware consumers.
With regards to Atomic, the source node also manages the
SF periods and sets up the routing and timing for all nodes.
The chosen source node (Fig. 3) is centrally located, giving us
roughly an equal amount of nodes on each side of the network.

The 100 kB of data (emulated firmware) is discretised into
packets, utilising the maximum payload size available without

Start Coordinator node sets
up LR-WPAN

Nodes joined
network?

Transmit next
data packet

Final packet
received?

Print data transfer
statistics

Wait for nodes to join
network

Destination records
sequence number

Packet received?Packet recorded
as lost

No

Yes

Yes

No

Yes

No

Fig. 5. Experiment flowchart. The source node initiates the network setup
and is responsible for the transmission of the firmware later. When all packets
have been sent, the statistics of each node are collected.

causing fragmentation (Tab. I). The remaining header bytes are
used for control information, source and destination addresses
and a checksum for the frame verification at the reception.
Once the network connection is established, all packets are
sent sequentially via the nRF52840 interface of the source
node. Each packet contains a unique identifier, which is their
sequence ID, so the firmware consumers are aware of which
packets were received or lost. Fig. 5 shows the high-level
structure of the procedure followed.
A. Transmitting and Receiving Sides

When using Atomic, we schedule a stream of packets for
transmission at the end of each Atomic period ∆SF (Fig 2).
Our protocol stack is based on Contiki-NG [19]. Thus, we
use various control processes and callbacks from the existing
stack. A control process scheduled on a 1 s timer checks the
readiness of the network and the completion of a transfer.
Once the connection is established, the send_next_packet
function from Contiki-NG is polled, and the “next packet” is
added to the queue and sent once the current process finishes.
On the other hand, when CSMA-CA is used, we schedule
a send_next_packet process in regular intervals. After
preliminary experimentation, we identified the timing required
for our network to maximise the throughput without causing
packets to be dropped due to timeouts.

On the receiving end, a node, upon joining the network, waits
for a stream of packets to arrive. A stopwatch timer is triggered
when the first packet is received, and the successful receptions
are monitored. We maintain two lists monitoring their unique
IDs, i.e. “packets received” and “packets lost”. “Packets lost”
are the ones that arrived out of order (e.g., their sequence ID
preceding the last packet received), have a checksum fail, or
are not received at all. To emulate a real-world-like scenario,
simplicity, and fair comparison at a large-scale, retransmissions
were set to 0. In a real-world application, this could be handled
by a higher layer, e.g., passing the list of the lost packets to the
transmitter and requesting the retransmission of the missing
payloads. When the last packet is received, the node stops its
local timer and prints its statistics.
B. Experimental Pipeline

For our evaluation, an automated deployment pipeline was
implemented. To simplify the experiment execution, the same
firmware code is uploaded on all nodes, containing both the roll-
out initiator and firmware consumer codes. Using the Contiki-
NG deployment service, the role of each node is decided

during run-time, i.e. hardcoding a single node (the same) as
the Atomic SF initiator and the firmware roll-out source. The
compiled binaries are uploaded on all nodes before flashing.
Upon successful uploading, all nodes are flashed in parallel,
and the experiment is initiated.

At the end of the experiment, all the results are recorded
on the Raspberry Pi via the serial interface. They are later
collected centrally on our UMBRELLA servers for post-
processing. It was observed that the interaction with the serial
interface causes a considerable delay for the SoC. Thus, it was
decided to collect all the data at the end of each experiment.
Furthermore, old-executed binaries can compromise the results
when running sequential experiments (e.g., due to backbone
network downtime nodes could be left earsplitting old data on
the channel). Therefore, all nodes were flashed with a dummy
binary at the end of each experiment to mitigate that. Finally,
all the above processes and steps are automated with Ansible
and a series of scripts to ensure smooth execution.

IV. PERFORMANCE INVESTIGATION

For our performance investigation, we started with a small-
scale experiment to identify the maximum achievable datarate.
For that, we ran a small-factor experiment within a controlled
lab environment using both Atomic and CSMA-CA and four
nodes. Particularly for CSMA-CA, in order to find the optimal
transmission time, we ran multiple experiments decreasing the
inter-packet time until the receiver became unreachable. The
last stable configuration was used as our time interval.

For our large-scale experiment, roughly ~150 nodes were
used. These are the nodes seen in Fig. 3 and is a subset of
the core UMBRELLA network. The rest of the nodes were
excluded either due to being out-of-range or being installed
inside buildings (thus not capable of forming a mesh with the
outdoor nodes). All the nodes eastwards from the source are
installed in a denser setup, with an average distance separation
of ~87 m. The nodes westwards are separated by ~94 m on
average. Finally, channel no. 26 from the IEEE 802.15.4
frequency band was used for CSMA-CA, and both small- and
large-scale experiments (carrier frequency of 2.480 GHz). This
channel was chosen due to its minimal observed interference
after a channel sounding on the available spectrum.

A. Small-scale Comparison

Tab. I shows a summary of the results and the experimental
configuration used. The time period (measured in ms) is the
interarrival time between two packets and is the lowest value
perceived with the network still reliably transferring data. These
results indicate a maximum achievable data rate under ideal-like
conditions. As seen, Atomic managed to outperform CSMA-
CA in terms of the throughput perceived. However, as we
will see in the next sections, more conservative configuration
values should be used under a real-world scenario, and thus
the achieved data rate decreases.

B. Atomic and CSMA-CA: a large-scale experiment

For the large-scale experiment, and using the indicative
values from Tab. I, we adapted several parameters to fit the
larger scale of the experiment. More specifically, the payload

TABLE I
SMALL SCALE THROUGHPUT EXPERIMENT RESULTS

MAC PHY MAX TX MAX SLOTS Time Period MTU Payload Size Throughput Datarate (%)
Atomic BLE 2Mbps 3 7 16ms 256B 230B 115.19Kbps 5.76%
Atomic BLE 1Mbps 3 7 20ms 256B 230B 92.17Kbps 9.22%
Atomic BLE 500Kbps 3 7 29ms 256B 230B 63.56Kbps 12.71%
Atomic BLE 125Kbps 3 7 77ms 256B 230B 23.94Kbps 19.15%
Atomic IEEE 802.15.4 250Kbps 3 7 29ms 127B 121B 33.40Kbps 13.36%
CSMA IEEE 802.15.4 250Kbps 1 - 31ms 127B 86B 21.98Kbps 8.79%

1

13.25

0 0

 Atomic

125Kbps

 Atomic

500Kbps

 CSMA-CA

RPL-Classic

CSMA-CA

 RPL-Lite

(a)

0

4

8

12

16

U
n
re

a
c
h
a
b
le

 n
o
.
o
f
n
o
d
e
s

13.02s

160.47s

3.51s 3.66s

 Atomic

125Kbps

 Atomic

500Kbps

 CSMA-CA

RPL-Classic

CSMA-CA

 RPL-Lite

(b)

0

50

100

150

200

T
im

e
 (

s
e
c
)

10.00 Kbps

0.08 Kbps

13.33 Kbps

40.00 Kbps

 Atomic

125Kbps

 Atomic

500Kbps

 CSMA-CA

RPL-Classic

CSMA-CA

 RPL-Lite

(c)

0

5

10

15

20

25

30

35

40

45

D
a
ta

ra
te

 (
k
b
p
s
)

Fig. 6. A comparison between Atomic and CSMA-CA. (a) shows the number of nodes non-reachable on average per experiment, (b) is the time required to
form the mesh network, and (c) is the maximum achievable datarate.

size of the CSMA-CA was reduced to 50 Kbps. This is
because the routing table included inside the MAC header
was larger, thus, more space was required to accommodate that.
Also, both RPL-Classic and RPL-Lite were used for CSMA-
CA. A worst-case unicast CSMA-CA scenario was chosen to
approximate the effects of a MPL approach, as in [20]. With
what regards Atomic, the MAX SLOTS was increased to 8,
and the MAX TX was increased to 12 to accommodate the
increased number of nodes that take part in the experiment.
These values were chosen after an exploratory investigation on
the testbed. We chose the best performing pair for the given
setup. Different time periods were tested, these being between
50 ms to 500 ms with an interval of 25 ms and between 500 ms
to 800 ms with an interval of 100 ms, and two PHY were used,
i.e., 125 Kbps and 500 Kbps. Finally, the denser side of the
network was utilised for this experiment (all nodes eastwards
from the source node).

We compare Atomic and CSMA-CA (Fig. 6) against the
number of nodes able to form a mesh network, the time required
to join, and the achievable datarate while sending 100 kB of
data. The nodes reached and the mesh join time are averaged
across all values, while the datarate is the maximum achieved.
As shown, in terms of the number of unreachable nodes, Atomic
outperforms CSMA-CA (Fig. 6-(a)), constantly forming a mesh
network with all the available nodes. Particularly when using
RPL-Lite, we observed that about 1/10th of the nodes was not
part of the end network. When rolling out a firmware update,
it is necessary to ensure that all the available nodes receive
it. Atomic was proven a lot more reliable in such a scenario.
Similar results can be seen in Fig. 6-(b) where Atomic requires
less time to form the network, thus achieving less downtime
and being less susceptible to network changes. This reflects on
the increased perceived datarate (Fig. 6-(c)). As shown, Atomic,
even with a lower PHY capacity (125 Kbps against 250 Kbps
for CSMA-CA), still manages to achieve better performance.
For the case of PHY 500 Kbps the results are even more
significant, showing four times higher datarate than CSMA-

CA. These results show that the firmware binaries can reach the
end destination faster, thus reducing the network’s “downtime”
and “maintenance” phases while making the roll-out less prone
to errors or external factors.

C. Atomic: A more thorough experimentation

Above, we presented the dominance of Atomic compared to
CSMA-CA. We now further investigate Atomic performance
using the entire UMBRELLA network. A single experiment
was executed throughout the entire network, but as we describe,
we considered the performance perceived on the dense and
sparse sides independently. As before, we used 125 Kbps and
500 Kbps PHYs. Due to the limited size of the paper, some
of the results will only be described in text.

In Fig. 7 we compare Atomic using two different densities
and PHYs and the same periods mentioned above. The
MAX SLOTS was set to 8, and the MAX TX was set to
16. For 125 Kbps, the mesh join time was slightly reduced
compared to the experiment in Sec. IV-B. The larger number of
nodes around the source node helps with the mesh initialisation,
insofar, sightly decreasing the join time. Considering the
500 Kbps PHY, as before, for the dense network side, the
increased number of nodes around the source decreases the
time required. However, when considering the sparser side,
it is shown that the time is almost doubled. The increased
distance separation and the higher PHY result in more hops
required for each node to be reached, thus the difference in
the results. The number of unreachable nodes is again zero
for both PHYs, implying that all nodes were part of the mesh
formation. The above findings give us a good indication of
the ability of Atomic and SF to form networks under various
scenarios and conditions.

We later investigate the reliability of Atomic when rolling
out the firmware update on all the consumers. As seen in Fig. 8,
lower periods can increase the maximum datarate, however
significantly reduce the reliability of the protocol. This is
because short Atomic periods reduce the number of nodes

2.81s
3.06s

Dense Sparse

Atomic 125Kbps

0

0.5

1

1.5

2

2.5

3

3.5
T

im
e
 (

s
e
c
)

3.12s

6.14s

Dense Sparse

Atomic 500Kbps

0

1

2

3

4

5

6

7

T
im

e
 (

s
e
c
)

Fig. 7. The average mesh join time for two Atomic PHYs and the two sides
of the UMBRELLA network.

50 100 150 200 250 300 350 400
0

5

10

15

20

D
a

ta
ra

te
 (

K
b

p
s
) PHY = 125kbps

PHY = 500kbps

50 100 150 200 250 300 350 400

Different periods (ms)

0

0.5

1

P
a

c
k
e

t
D

e
liv

e
ry

 R
a

te
 (

%
)

PHY = 125kbps

PHY = 500kbps

Fig. 8. The maximum datarate observed and the average packet delivery rate
between all the UMBRELLA nodes.

participating in the Atomic SF operation. Thus, many nodes
become unreachable until the next Atomic period. When the
period is increased, the datarate is reduced. Allowing more time
for Atomic to configure reduces the available channel capacity,
increasing the time mandated for a firmware roll-out. These
results show us the importance of choosing the appropriate
configuration based on the available setup. By doing so, we
can maximise the throughput without compromising the system
stability. Focusing on the two sides of the network now (dense-
sparse), it was observed that on average ~6 nodes on the sparse
side, and ~2 on the dense one, were not able to finish the
binary reception and dropped from the network during the
roll-out. This was due to the operation of Atomic and the
number of slots chosen. After further investigation, these nodes
were identified to have very low RSSI, being at the edge of
their neighbours’ coverage area. Such nodes are susceptible
to the way Atomic works, especially when the number of
MAX SLOTS increases, as they cannot reliably finalise the
Atomic initialisation after every Atomic period, and thus are
prune to misconfigurations. The performance in such networks
could be improved further by combining SF with traditional
routing like in [21].

V. CONCLUSIONS

This paper described a large-scale IoT wireless investigation
using two protocols, i.e., Atomic and CSMA-CA. We adopted
a typical firmware roll-out as our experimental use-case
using different configurations. We used the publicly available
UMBRELLA testbed for our large-scale investigation. Our
results showed that Atomic and SF-like protocols outperform
traditional protocols like CSMA-CA in such use-cases and
larger networks. We also discovered how denser or sparser

setups affect SF and Atomic and the importance of proper
configuration based on the given network setup. In the future,
we plan to investigate the feasibility of other protocols and
extend Atomic’s capabilities to accommodate considerable
distance variations between neighbouring nodes.

ACKNOWLEDGMENT

This work is funded in part by Toshiba Europe Ltd.
UMBRELLA project is funded in conjunction with South
Gloucestershire Council by the West of England Local Enter-
prise Partnership through the Local Growth Fund, administered
by the West of England Combined Authority.

REFERENCES

[1] D. Singh, G. Tripathi, and A. J. Jara, “A Survey of Internet-of-Things:
Future Vision, Architecture, Challenges and Services,” in Proc. of IEEE
WF-IoT 2014, Mar. 2014, pp. 287–292.

[2] P. P. Gaikwad, J. P. Gabhane, and S. S. Golait, “A Survey based on
Smart Homes System using Internet-of-Things,” in Proc. of Int. Conf.
on ICCPEIC, Apr. 2015, pp. 0330–0335.

[3] H. Arasteh, V. Hosseinnezhad, V. Loia et al., “IoT-based Smart Cities:
A survey,” in Proc. of IEEE EEEIC 2016, Jun. 2016, pp. 1–6.

[4] J. L. Hernández-Ramos, G. Baldini, S. N. Matheu et al., “Updating IoT
Devices: Challenges and Potential Approaches,” in Proc. of GIoTS 2020,
2020, pp. 1–5.

[5] J. C. Cano, V. Berrios, B. Garcia et al., “Evolution of IoT: An Industry
Perspective,” IEEE Internet of Things Magazine, vol. 1, no. 2, pp. 12–17,
May 2019.

[6] L. Oliveira, J. J. P. C. Rodrigues, S. A. Kozlov et al., “MAC Layer
Protocols for Internet of Things: A Survey,” Future Internet, vol. 11,
no. 1, Jan. 2019.

[7] M. Baddeley, U. Raza, M. Sooriyabandara et al., “Atomic-SDN: Is
Synchronous Flooding the Solution to Software-Defined Networking in
IoT?” IEEE Access, vol. 7, May 2019.

[8] P. Kolodzy, “Communications Policy and Spectrum Management,” in
Cognitive Radio Technology (Second Edition), B. A. Fette, Ed. Oxford:
Academic Press, 2009, pp. 27–64.

[9] Nordic Semiconductors, “nRF52840 Product Specification, v1.1. [On-
line],” https://infocenter.nordicsemi.com/pdf/nRF52840PSv1.1.pdf, Ac-
cessed: 2021-12-15.

[10] M. Spörk, C. A. Boano, and K. Römer, “Performance and Trade-Offs of
the New PHY Modes of BLE 5,” in Proc. of PERSIST-IoT 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p. 7–12.

[11] M. Baddeley, C. A. Boano, A. Escobar-Molero et al., “The Impact of
the Physical Layer on the Performance of Concurrent Transmissions,” in
Proc. of IEEE ICNP 2020, Oct. 2020.

[12] A. Tanenbaum and D. Wetherall, Computer Networks, 5th ed. Pearson,
2013.

[13] O. Iova, P. Picco, T. Istomin et al., “RPL: The Routing Standard for the
Internet of Things... Or Is It?” IEEE Communications Magazine, vol. 54,
no. 12, pp. 16–22, 2016.

[14] M. O. Farooq and T. Kunz, “Contiki-based IEEE 802.15.4 Node’s
Throughput and Wireless Channel Utilization Analysis,” in Proc. of
IFIP Wireless Days 2012, Nov. 2012, pp. 1–3.

[15] T. Farnham, S. Jones, A. Aijaz et al., “UMBRELLA Collaborative
Robotics Testbed and IoT Platform,” in Proc. of IEEE CCNC 2021, Jan.
2021, pp. 1–7.

[16] Texas Instruments, “CC1310 SimpleLink Ultra-Low-Power Sub-1 GHz
Wireless MCU datasheet (Rev. D) [Online],” https://www.ti.com/lit/gpn/
cc1310, Accessed: 2021-12-15.

[17] Skyworks Inc., “RF Front-end Modules Boost Wireless Performance,”
Accessed: 2021-12-15. [Online]. Available: https://www.skyworksinc.
com/-/media/SkyWorks/Documents/Articles/RF Bluetooth FEMs.pdf

[18] RaspberryPi, “Compute Module 3b+,” https://www.raspberrypi.org/
products/compute-module-3-plus/, 2021, Accessed: 2021-12-15.

[19] “Contiki-NG: The OS for Next Generation IoT Devices,” https://github.
com/contiki-ng/contiki-ng, Accessed: 2021-12-15.

[20] I. Ishaq, J. Hoebeke, I. Moerman et al., “Experimental Evaluation of
Unicast and Multicast CoAP Group Communication,” MDPI Sensors,
vol. 16, no. 7, Jul. 2016.

[21] M. Baddeley, A. Aijaz, U. Raza et al., “6TiSCH++ with Bluetooth 5
and Concurrent Transmissions,” in Proc. of EWSN 2021, Feb. 2021, p.
25–30.

https://infocenter.nordicsemi.com/pdf/nRF52840 PS v1.1.pdf
https://www.ti.com/lit/gpn/cc1310
https://www.ti.com/lit/gpn/cc1310
https://www.skyworksinc.com/-/media/SkyWorks/Documents/Articles/RF_Bluetooth_FEMs.pdf
https://www.skyworksinc.com/-/media/SkyWorks/Documents/Articles/RF_Bluetooth_FEMs.pdf
https://www.raspberrypi.org/products/compute-module-3-plus/
https://www.raspberrypi.org/products/compute-module-3-plus/
https://github.com/contiki-ng/contiki-ng
https://github.com/contiki-ng/contiki-ng

	Introduction
	System Description
	IEEE 802.15.4, Bluetooth and the Different PHYs
	Carrier Sense Multiple Access with Collision Avoidance
	Concurrent Transmissions and Synchronous Flooding
	UMBRELLA Testbed and Network Setup

	Large Scale Experiments
	Transmitting and Receiving Sides
	Experimental Pipeline

	Performance Investigation
	Small-scale Comparison
	Atomic and CSMA-CA: a large-scale experiment
	Atomic: A more thorough experimentation

	Conclusions
	References

