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ABSTRACT
Data-enabled cities are recently accelerated and enhanced with
automated learning for improved Smart Cities applications. In the
context of an Internet of Things (IoT) ecosystem, the data com-
munication is frequently costly, inefficient, not scalable and lacks
security. Federated Learning (FL) plays a pivotal role in providing
privacy-preserving and communication efficient Machine Learning
(ML) frameworks. In this paper we evaluate the feasibility of FL in
the context of a Smart Cities Street Light Monitoring application.
FL is evaluated against benchmarks of centralised and (fully) per-
sonalised machine learning techniques for the classification task of
the lampposts operation. Incorporating FL in such a scenario shows
minimal performance reduction in terms of the classification task,
but huge improvements in the communication cost and the privacy
preserving. These outcomes strengthen FL’s viability and potential
for IoT applications.

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures; Sensor networks; • Computing methodologies → Su-
pervised learning by classification; Neural networks; • Infor-
mation systems→ Data analytics.

KEYWORDS
Smart Cities, IoT, Infrastructure, Monitoring, Lamppost, Neural
Networks, Federated Learning
ACM Reference Format:
Diya Anand1,2, Ioannis Mavromatis2, Pietro Carnelli2, and Aftab Khan2 .
2022. A Federated Learning-enabled Smart Street Light Monitoring Applica-
tion: Benefits and Future Challenges. In 1st ACMWorkshop on AI Empowered
Mobile and Wireless Sensing (MORSE ’22), October 21, 2022, Sydney, NSW,
Australia. ACM, Linz, AT, 6 pages. https://doi.org/10.1145/3556558.3558580

1 INTRODUCTION
A Smart City is described in [12] as an urban medium using Infor-
mation and Communication Technologies (ICT) to promote more
efficient ordinary city operations and improve the Quality of Ser-
vices (QoS) received by the citizens. The objective of a Smart City
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is to enhance the Quality of Life (QoL) of the citizens and improve
sustainability. This is achieved by promoting the digitisation of
services, automation, and the use of data for intelligent responses
and decisions, while autonomously adapting to different needs [18].

The realm of Smart Cities covers multiple areas and applications,
such as Smart Transportation, Smart Urban Management, Smart
Tourism, Green Cities, Smart Healthcare, etc. [19]. The technologies
required for these applications are numerous but can be commonly
grouped under three categories, i.e., sensing and data collection,
intelligent decision support, and exchange of data and decisions
between different system entities [21]. All these technologies are
part of an Internet of Things (IoT) framework [24] that provides
the underlying infrastructure and services for their operation.

Our work focuses on improving resource utilisation within an
IoT ecosystem by moving intelligent decision-making closer to the
sensors and the “edge”. More specifically, we evaluate the feasibil-
ity of using Federated Learning (FL) within a Smart Street Light
Monitoring application context. This application is a good repre-
sentation of Smart Cities as it generates a large amount of data,
requires increased communication bandwidth for their exchange,
and is resource-intensive when classifying whether a lamppost is
operational or not.

FL [26] is a branch of Machine Learning (ML) that relies on
multiple “clients”, e.g., edge devices, to collect and process local
data for training an ML model. In turn, the client’s ML model
parameters are shared with a central FL server for global model
aggregation. Once enough updates from clients (sample fraction
per round of FL) within the network have been received, a new
global model is generated and broadcast to all clients. Such methods
of training local models have certain benefits important to IoT and
“smart city”-centric networks [26].

IoT networks often build upon Low-power Wide-Area Network
(LPWAN) wireless protocols such as LoRaWAN, Zigbee and Blue-
tooth [4]. For example, a Smart Street Light Monitoring application
can easily generate hundreds of gigabytes of data if central training
and processing are required [23]. However, this amount of data is
almost impossible to be exchanged via the low-power, low data
rate IoT wireless links. In such a scenario, FL can play a pivotal role
by replacing the exchange of data with the exchange of the more
lightweight prediction models.

Furthermore, FL provides a variety of privacy advantages re-
quired for real-world Smart Cities applications [11]. Data minimi-
sation is achieved as the raw data stay on the edge device, and data
leakage can be avoided in transit. For external users interacting
with the system, having access to only aggregated models and data
can enhance privacy. Traditional end-to-end encryption mecha-
nisms can secure the models exchanged in transit. Finally, even
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when an edge device is tampered with, and the model is altered,
the nature of FL and the model aggregation on the server limits
individual malicious models’ influence on the global output. Of
course, extensions and algorithms can provide more formal guar-
antees such as differential privacy [16], or algorithms for concept
drift detection can identify such drifts [9].

The rest of the paper is structured as follows; Section 2 sum-
marises the related work to optimising FL clients to their local
datasets/environments. Section 3 discusses our methodology, ex-
periments and introduces our evaluation dataset. Our experimental
evaluation and results are discussed in Section 4, supported by a
detailed discussion on the lessons learned from this activity. Finally,
Section 5 summarises our findings, and provides suggestions for
future research activities.

2 RELATEDWORK
ML is currently being used in various intelligent fault diagnosis
methods. For example, [10, 20] present twoML-based fault detection
mechanisms for street light applications. Sending the collected data
to a central server, the real-time illuminance of the lamppost is
evaluated, and faults are reported to the maintenance staff. The
results show up to 90% of fault detection accuracy for such scenarios.
Such an approach increased the communication cost in the IoT
system while introducing many challenges in securing the data in
transit.

Personalisation in ML can enhance detection by targeting partic-
ular entities and optimising the trainedmodels accordingly. Authors
in [17] present three ways of personalisation utilising the MNIST
dataset. Their results show increased performance compared to
traditional ML strategies. However, personalised models trained on
a server require again increased communication overhead. Person-
alised models trained at the edge, even though they minimise the
communication overhead, require a large dataset available for each
model trained. The intermittent nature of an IoT system, where
data may be scarce, can create obstacles to collecting such vast
amounts of data.

FL can bridge the gap between the personalised and centralised
approach. Training models locally decrease communication costs
while preserving data privacy. Moreover, for edge nodes with an
abundance of data, aggregating the existing models on the server
side and sharing them with all edge nodes can ensure that a highly
accurate model is always available for inference. However, FL
can suffer from highly skewed, non-Independent, Identically Dis-
tributed (IID) data. Knowing the data types and ways of clustering
them can enhance FL’s accuracy. Work carried out by [25] shows
an improvement of circa 30% on the CIFAR-10 dataset compared
to classical FedAvg using their proposed data-sharing strategy be-
tween participating clients. The authors show that sharing 5% of
a separate global dataset across clients and initialising a model at
the server on the dataset mentioned above leads to a classifica-
tion performance increase. Federated Meta-Learning or FedMeta
framework [3] uses parameterised algorithms such as MAML and
Meta-SGD to train on the client’s local data and communicate the
updates to the server instead of updated models in traditional FL.
In FedAMP [22], copies of local models are kept on the cloud server
with attentive message passing between clients and server leading

to aggregated client models of messages passed. Both methods can
again enhance FL’s performance.

Whilst such techniques show general performance improvement,
the practical challenges are numerous. For example, creating a sep-
arate dataset of similar distribution would require prior knowledge
of client data and sharing this data with the server. This method is
not aligned with FL principles of maintaining local datasets for the
participating clients. Furthermore, such data-sharing techniques
might not be feasible amongst thousands of sensors/edge devices
in an IoT network. Similarly, sharing and storing multiple copies
of clients’ models requires more robust, scalable and resource-rich
infrastructure and storage capabilities. This approach does not scale
well in networks of hundreds of thousands of participating devices.

3 METHODOLOGY AND EXPERIMENTS
In this paper we investigate the feasibility of FL for a lamppost
fault detection use-case and compare it against a centralised and a
“fully” personalised approach. An FL benchmark method, using a
typical averaging technique to establish a global model (inspired
by [15]), was compared to a centralised method (i.e., classical ML)
and an extreme version of or a “hyper-personalised” FL method,
whereby each lamppost uses a model trained on only it’s dataset
and was never aggregated centrally. Such “extreme” methods pro-
vide a good overview of their potential for accurate detection using
very different training data splits.

3.1 Convolutional Neural Network Model
Selection

For most FL IoT applications, the model should be lightweight
enough to train on the edge device. Moreover, FL involves broad-
casting the model between clients and the server. Hence a bigger
model would not meet the bandwidth limitations of FL and increase
communication costs significantly.

A Convolutional Neural Network (CNN) based on the Resid-
ual Networks (ResNet) architecture was considered “lightweight”
enough for training and inference on IoT devices and capable of clas-
sifying incoming images. In particular, ResNets [7] were designed
to combat deep neural networks which suffer from vanishing gra-
dients (a common problem encountered in neural network training
procedures). Furthermore, such a model allowed for fair comparison
amongst the three different ML strategies being investigated.

3.2 The Dataset
Our investigation is based on a large volume dataset of street light
images. Since our focus is the evaluation of FL under Smart Street
Light Monitoring environments, we selected the "Dataset of Images
of Public Streetlights" [13], generated as part of the UMBRELLA
project [5]. The dataset is publicly available from Zenodo Open
Repository [14]. The dataset consists of over 350, 000 images of
streetlights, collected hourly and over a period of six months. The
images come from 140 UMBRELLA IoT nodes deployed across
multiple locations in the South Gloucestershire region of the UK.
The UMBRELLA nodes are currently installed at a public stretch of
∼7.2 km road (about ∼ 80% of the nodes) and around the University
of the West of England (UWE) Frenchay Campus (about ∼ 20%
of the nodes). Since each lamppost had between 1, 000 − 4, 000
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(a) Node Type 0 (b) Node Type 1 (c) Node Type 2

Figure 1: (a) Node 0: Ideal Lamppost. The light is clearly visible and this becomes easy detection of whether the light is on or
off (b) Node 1: Normal Lamppost. The light is not directly visible; for detection (c) Node 2: Edge Case Lamppost. the light is
completely covered by vegetation or the camera has slipped making for complicated detection.

images, personalised models per lamppost were possible to train
and optimise for our comparison, achieving very high accuracy on
each model independently.

The images in the dataset were used to determine whether
the lamppost is operational or not, i.e., whether the lamppost is
switched ON or OFF. The lamppost functionality is monitored dur-
ing different times (once per hour), with the light expected to be
ON at night and OFF during the day, as part of a partnership with
the local government to ensure road safety. As “night” is considered
the time period from “15-minutes before sunset” until “15-minutes
after sunrise” and calculated independently for each day.

The images are in JPEG format with a resolution of 1024 × 768
pixels. The entries in the dataset are already pre-labelled. What
is more, the dataset spans a large geographical area and various
different lamppost designs, heights and operational modes. Several
streetlights are partially obstructed by vegetation or are outside the
Field of View (FoV) of the camera. Finally, the cameras facing the
sky are susceptible to weather conditions (e.g., rain, snow, direct
sunlight, etc.) that can partially or entirely alter the quality of the
images taken. All the above generate “interesting” and unique edge-
cases when evaluating FL within the context of a Smart Street Light
Monitoring application.

3.3 Node Categorisation
Figure 1 shows some example images of the dataset used. Our
evaluation and discussion are based on further grouping the nodes
in the three categories seen in Figure 1. As discussed in Section 4,
we grouped the nodes into three categories with respect to the
Line-of-Sight (LoS) to the lamppost (being inside the camera’s FoV
or not) and whether there is any obstruction by vegetation.

More specifically, Figure 1a is labelled as “node type 0”, modelling
an ideal lamppost image; it possesses a clear view of the lamppost
light, making the binary classification task of whether the light
is on or off relatively simple. Figure 1b is an intermediate case
labelled as “node type 1”; due to the positioning of the UMBRELLA
node, only the pole of the lamppost is visible. For this node type,
the “turned-off” and “turned-on” lampposts can be classified by a
human looking at the luminance of an image. However, depending
on the camera’s position inside the node and the weather conditions,

the classification is not always easy with bare eyes. Finally, Figure
1c, referred to as “node type 2”, represents the most challenging
type captured; this subclass consists of images with no view of the
lamppost due to vegetation or the camera being mispositioned. The
labelling of each node was done manually before the evaluation.
For that, we considered the unique characteristics of each node.
The labelling is later used during our evaluation process (fed as a
CSV file in our algorithm)1.

3.4 Data Pre-Processing
The original, ‘raw’ lamppost dataset consists of images of 1024×768
Red, Green, Blue (RGB) pixels which are far too big for most CNNs
trained on edge devices (such as the Nvidia Jetson Nano). To re-
duce the computational and memory footprint during training and
deployment we reduced the images to 32 × 32 pixels with three
channels (RGB representation) as shown in Figure 2 by resizing,
cropping and down-sampling the image using a bilinear interpo-
lation method. Finally we normalised the reduced RGB images by
subtracting the mean from each pixel and dividing it by the standard
deviation (Figure 2).

4 EXPERIMENTAL EVALUATION
As discussed in Section 3 our evaluation compares a centralised,
a “fully” personalised, and an FL approach. The dataset was split
into a training and testing dataset; the test set consisted of 20% of
images from every lamppost node/device, and the remaining 80%
constituted the training dataset. This was consistent throughout all
experiments. For our performance investigation, we also considered
the type of nodes. We combined grouped the nodes of types 0 and
1 while we separately evaluated the nodes of type 2 to observe how
the performance can degrade when facing such edge cases.

The developed centralised model and method generates a single
model for the entire lamppost dataset for training. The “fully” per-
sonalised method is demonstrated by treating each lamppost as a
separate entity. A model is trained solely on its own dataset (i.e.,
with no FL aggregation). Finally, the FL approach is based on 140

1A copy of this file can be found in the following link:
https://www.dropbox.com/s/ydxioouluet3gwf/nodetypes.csv?dl=0

https://www.dropbox.com/s/ydxioouluet3gwf/nodetypes.csv?dl=0
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Table 1: Overview of Experiments

Method Trained on #Training Devices Evaluated on #Testing Devices #Models

Personalised
Normal Nodes 133 Normal Nodes 133 133

Edge-Case Nodes 7 Edge-Case Nodes 7 7

All nodes or devices 140 All nodes or devices 140 140

Centralised
All nodes or devices 140 Normal Nodes 133 1
All nodes or devices 140 Edge-Case Nodes 7 1

All nodes or devices 140 All nodes or devices 140 1

FL benchmark
All nodes or devices 140 Normal Nodes 133 1
All nodes or devices 140 Edge-Case Nodes 7 1

All nodes or devices 140 All nodes or devices 140 1

768 x 1024
3 channels

32 x 32
3 channels 

RESIZE

CENTERCROP

32 x 32

Downsampled by 
creating new pixels to 

replace a smaller 
matrix of pixels 

- Bilinear 
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Crop edges to desired 
shape - light must be 
visible on all images

NORMALISATION

Pixel range per channel
from  0-255  to  0-1 
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Rotation
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Gaussian 
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Figure 2: Flowchart of Data Pre-Processing Pipeline

clients (i.e., one per lamppost), aggregating their models using the
FedAvg algorithm. All experiments are summarised in Table 1.

4.1 Results for all Training/Testing Methods
Our results are summarised in Table 2. Considering the “normal”
nodes, as expected, the fully personalised and centralised methods
generated higher accuracy (98.57% and 98.41% respectively) and F1-
scores (0.99 and 0.988 respectively) than the benchmark FL method
(accuracy of 96.7% and F1-score of 0.967). Both methods were al-
lowed to train until fully converged (with minimal overfitting).

The difference is less prominent when the “edge” nodes (node
type 2) are considered. Again, personalised and centralised meth-
ods slightly outperform FL, but only by a couple of percentage
points. The above results are due to having either access to the
entire dataset with a single model to train (centralised) or having
each client train on a single lamppost’s datasets (fully personalised
method).

4.2 Discussion and Observations

Whilst the personalised method fractionally outperformed the
centralised and FL training methods, it still achieved a lower accu-
racy and F1-score than required for immediate deployment. Con-
sidering a city-scale deployment, such a system will still produce
false positives/negatives at a rate not easily monitored by local
government officials. Even at the fairly limited coverage provided
within our dataset (140 nodes and lampposts), an error rate of 1.75%
will result in tens if not more daily alerts. Given the diversity of the
node types and camera locations, more sophisticated classification
algorithms are required for better accuracy. For example, taking
into account multiple concurrent decisions can reduce the error
rate as falsely classified results will be the minority of the reported
values.

The “fully” personalised method relies on having a large enough
amount of data stored locally on the lamppost edge device for
individual training. This constitutes a significant problem when
considering the resource-constrained nature of the current IoT
devices or when “new” lampposts join the network (as there is no
available global model).

Considering the centralised classification, as seen, it performs
almost as well as the fully personalised method. However, it relies
on having all the lamppost data transferred to a central server for
processing and training. Currently, the entire compressed lamppost
dataset is circa 150GB in volume. Admittedly, this is without any
of our pre-processing and dimensionality reduction techniques ap-
plied to the images. However, this is still a good indication of the
costly nature of exchanging such a large volume of data. Further-
more, this will also result in privacy and confidentiality issues that
may arise with the data being in transit.

The benchmark FL performed the worst out of the three eval-
uated. This is likely due to the combination and equal weighting
during aggregation of the edge case nodes (i.e., type 2). The FL
method was several percentage points lower in accuracy and F1-
score than the personalised and centralised methods. However, such
a method provides not only increased data privacy but also a global
model too, ready to be used for initialising training or inference
on a new lamppost/edge device joining the network. Therefore,
gaining some scalability advantage and drastically reducing the
overall data communication volume during training.
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Table 2: Experimental Results for all Three Implemented Methods of Training and Testing.

Method #training
lampposts

#test
lampposts

#FL clients #Models #Training
samples

#Test samples Accuracy (%) F1-Score

Personalised
133† 133† – 133 281804 70549 98.57 0.990
7‡ 7‡ – 7 5891 1476 94.82 0.945

140 140 – 140 287695 72025 98.25 0.984

Centralised
140 133† – 1 287695 70549 98.41 0.988
140 7‡ – 1 287695 1476 93.39 0.943

140 140 – 1 287695 72025 98.01 0.983

FL benchmark
140 133† 140 1 287695 70549 95.89 0.967
140 7‡ 140 1 287695 1476 92.15 0.932

` 140 – – 287695 72025 94.02 0.949

†actual normal case
‡actual edge case
` average of models
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Training on Client 
Specific Data
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Client 1 Client 2 Client N
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Normal Dataset

Figure 3: Flowchart of Proposed Approach for Personalised Federated Learning

5 CONCLUSIONS AND FUTURE RESEARCH
In this paper, we evaluated three different methods of detecting
lamppost operability in a smart city environment. As seen, a “fully”
personalised method provides a strong performance but does not
scale well. On the other hand, a centralised approach is very de-
manding on the communication overhead introduced. FL can pro-
vide benefits of both worlds but still lacks in terms of accuracy. We
suggest the following for future FL and personalised FL research
challenges:

(i) We are currently experimenting with a “tuned” personalised
method, whereby certain model layers are trained and op-
timised solely on each device and dataset. In contrast, the

remaining model layers are used for aggregation when re-
ceiving updates from the global FL parameter server. Work
is still ongoing, with promising results regarding accuracy
observed and the reduction of communication costs.

(ii) Clustered personalised FL based on client model parameters
received at the FL parameter server (proposedmethod shown
in Figure 3). Ideally, this would allow for early detection of
the lamppost node types, which could then be separately
aggregated into multiple (but concurrent) FL global models.
Any new connected lamppost joining the network could
receive a copy of each FL global model and run local tests to
evaluate performance on its local dataset before conducting
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local training/tuning optimisation. Early experiments sug-
gest it is possible to detect and classify extreme edge case
nodes (i.e., node type 2) fairly accurately, but we fail to detect
the other node types. Whilst having only two global models
for FL would work, ideally, we want to personalise the clus-
ters to the extent that we achieve even higher accuracies,
again to drastically reduce notifications/alerts received by
the government officials monitoring the system and priori-
tising lampposts for maintenance.

(iii) Given the hypothesised upper bound of performance (cur-
rently, the personalised method achieved an averaged F1-
score of 0.98), it may suggest that further FL personalisation
strategies may struggle to gain significant improvements.
As such, in particular with ML, often the dataset might be
limiting in terms of achieving such a high performance; for
example details/nuances might be missed or averaged out
when the images are drastically reduced in size during our
pre-processing step (see Figure 2). Consequently, we have
been experimenting with image metadata and other image
statistics, particularly the mean and median green pixel val-
ues. Our intuition is that in extreme edge cases, where the
lighting element is not visible to the monitoring sensor cam-
era, small amounts of reflected light (or remnants of refracted
light through vegetation) might be detectable. Our prelimi-
nary experiments using such metadata to improve detection
accuracy have proven relatively successful but need care-
ful calibration and integration into a robust and scalable
personalised FL method.

(iv) Communication overhead in FL can be further improved by
introducing selective update strategies, such as dynamic sam-
pling or selective masking on the models exchanged [1, 8].
Such methods can enhance the system’s scalability, mainly
when introducing thousands of clients. Furthermore, adap-
tive compression on the generated models [2, 6] can bring
even more benefits by reducing the communication over-
head and enabling the exchange of data over low data rate
IoT technologies and longer distances.
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