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Abstract

With the proliferation of Internet of Things (IoT) technologies in urban environ-
ments, cities are increasingly deploying Edge processing nodes for urban sensing. This
large-scale integration of Edge nodes and sensing endpoints raises significant security
concerns. For instance, existing Intrusion Detection techniques cannot scale well and
do not consider the privacy and energy consumption implications that emerge when
applied to those systems. In addition, the use of containerised applications managed by
container orchestration platforms in these environments, while enabling diverse applica-
tions and allowing scanning of the container images, can still introduce vulnerabilities.
This Chapter addresses the challenge of effectively detecting such malicious activi-
ties in large-scale resource-constrained IoT systems. We introduce a semi-supervised
distributed learning solution employing Federated Learning for real-time anomaly de-
tection across the IoT infrastructure. Our approach involves analysing Linux system
call data through a Federated Learning Framework, significantly reducing the need for
central data processing. The Chapter presents a comprehensive architectural overview
of the system, its core components, and the methodology for deploying and updating



anomaly detection models. It also provides the performance evaluation of our approach.
Our results demonstrate that the size of the clients’ datasets and the use of pre-trained
models play a significant role in the performance of Federated Learning (FL) models in
intrusion detection for large-scale IoT environments. The work presented in this chap-
ter was supported by UK Research and Innovation, Innovate UK [grant number 53707].

The authors would also like to thank Bo Luo and Dan Howarth for their contribution
to the project as members of SMARTTA Ltd.
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1 Introduction

With cities experiencing rapid growth, local authorities strive to enhance essential ser-
vices for residents, including waste management, water supply, and transportation. They
have adopted various technologies to gather, analyse, and display data from sensors placed
throughout the city. These sensors, often found in streetlights and public vehicles, monitor
factors like noise levels and air quality. This data-driven approach benefits both citizens
and policymakers, helping them meet regulatory requirements.

Notable projects, such as the University of Chicago’s Array of Things [113] and the South
Gloucester Council’s UMBRELLA project [|4,/5], exemplify these efforts. These initiatives
involve deploying numerous nodes across the city to collect data on noise and air pollution
and perform video-based analysis. In the case of the UMBRELLA project, approximately
200 nodes, developed by Toshiba, are deployed over a 7 km area, monitoring air pollution
and street lighting and providing a platform for IoT applications. To manage these ap-
plications, the UMBRELLA project employs containers with Kubernetes orchestration for
Cloud and Edge deployments. While containers may be harmless, they can be exploited
maliciously, leading to actions such as privilege escalation and Denial of Services (DoSs)
attacks as presented in the authors’ previous work in [6]. These actions pose risks to the
host system and potentially the entire infrastructure. In addition, although administra-
tors typically scan container images for vulnerabilities before deployment, identifying all
potential weaknesses through static checks is challenging. Therefore, continuous monitoring
of system and network activity, including data generated by containers, the host OS and
network interactions, is essential.

Our approach utilises the Linux auditing system (auditd) to collect data on Linux system
calls, which is then analysed using an autoencoder-based anomaly detection approach to
detect malicious activities. We also introduce FL to update models in a privacy-preserving
manner across a distributed network of edge devices.

In the latter part of this chapter, we demonstrate the practical implementation of such
a system within an IoT testbed. The contributions of this work include the development of
an Al-based intrusion detection system designed to operate efficiently on edge nodes in a
distributed manner, capable of detecting intrusions in real-world smart city scenarios. This
system is characterised by its federated model training and updating mechanisms. Addi-
tionally, we introduce a concrete use case and provide supporting datasets for identifying
and detecting malicious containers deployed in edge systems.

The structure of this chapter is organised as follows: Section [2| delves into related work,
providing insights into the existing research landscape. Section [3]outlines our approach and



the architectural framework we employ. Section [4] presents the evaluation of our approach.
Finally, Section [5| concludes our work and offers pathways for further research.

2 Related Work

Research has shown an increasing number of vulnerable Industrial IoT devices within the
industry that are connected to the Internet |[7]. Significant research has been conducted
on securing Industrial IoT devices, predominantly focusing on Cloud-centric security so-
lutions. However, Industrial IoT applications introduce additional constraints that render
these Cloud-based methods unsuitable. These applications are time-constrained and crit-
ical to safety, and they typically require that data remain within the system to maintain
privacy. Consequently, as highlighted in [8], it is essential to perform intrusion detection
either directly on the device or close to it. This approach aligns with the Industrial Internet
Security Framework (IISF) developed by the Industry IoT Consortium (IIC), according to
which endpoint monitoring can be performed either internally to the endpoint or externally
to it 9].

Cuwrrent online Intrusion Detection Systems (IDSs) fall into two primary categories:
signature-based and behaviour analysis-based. The operation of signature-based Intrusion
Detection Systems (IDS) relies on signatures or rules to detect attacks. These are engineered
based on insights gained from existing attacks including specific strings in network packet
payloads and TP addresses that are linked to cyber attacks. However, such techniques are
ineffective against more sophisticated attack variants and zero-day exploits that existing
signatures cannot cover. These “unknown” attacks remain undetected by signature-based
IDSs. Additionally, while the upkeep of a large database of signatures is feasible for con-
ventional I'T workstations, this approach is incompatible with the limited capacity inherent
to IoT devices [10].

On the other hand, behaviour analysis-based methods focus on identifying abnormal
system behaviour by detecting deviations from its normal/expected patterns as these are
typically modelled using Artificial Intelligence (AI). The limitations of signature-based ap-
proaches can be effectively mitigated through Al-based behaviour analysis techniques |10].
A large number of Al-based IDSs has been proposed, ranging from multi-class classifica-
tion to anomaly detection for the detection of novel attacks in IoT systems [11H15]. In
particular, unsupervised anomaly detection methods enable the detection of novel attacks
without requiring prior knowledge of existing threats [13] since they base their operation
on accurately representing the system’s normal state. Consequently, contrary to other Al-
based techniques, anomaly detection-based IDSs are easier to train and are also capable of
detecting suspected intrusions, zero-day attacks and device failures |16].

Nevertheless, significant challenges arise in the implementation of anomaly detection-
based IDSs within an IoT system. These include the requirement to frequently update the
model to mitigate concept drift, a phenomenon where a model’s performance deteriorates
over time due to the dynamic nature of the system which alters its normal behaviour.
Furthermore, the need to collect data from IoT devices for analysis and further model
training to address concept drift introduces additional challenges. Data collection from IoT
and Industrial IoT devices can lead to privacy implications and increase the network load,
deteriorating operational performance. In addition, even though a plethora of similar IoT
devices can be deployed in different systems, privacy implications hinder the transfer of
knowledge between these systems, further complicating the scenario [17].



Anomaly detection for intrusion detection in IoT devices utilising a FL architecture is
an emerging field that addresses several of the aforementioned issues. Compared to tra-
ditional methods, FL. employs a decentralised collaborative training approach that allows
knowledge sharing and incremental training without compromising privacy. In its original
form, FL comprises of an aggregation server and multiple distributed worker nodes. Each
node performs incremental training, using its local data, on the model shared by the ag-
gregator. The aggregator collects the model parameters from all workers and aggregates
them to generate a new Global Model which is shared back with the workers [18]. The
authors in [19] developed an FL-based anomaly detection system for IoT devices, where
security gateways of IoT networks act as the “Edge” workers that collect data from the
devices to perform incremental training. A centralised security service performs the model
aggregation. The authors implemented the anomaly detection based on Gated Recurrent
Units (GRUs) due to their good performance on time series data and limited computational
requirements. However, due to their recurrent nature, GRUs can be more computationally
expensive than other activation functions used with Deep Neural Networks (DNNs).

In their study [20], the authors implemented a DNN model for anomaly detection in
healthcare IoT systems using a Federated Learning (FL) framework. Their approach yielded
improved results compared to centralised DNN-based anomaly detection methods. However,
their paper does not describe how the dataset was distributed in the conducted experiments,
and there is no analysis of the Global Model initialisation. The increased performance over
centralised approaches, despite the generalisation that naturally occurs due to parameter
aggregation, implies that the data might have been uniformly and identically distributed
among the workers. This distribution scenario does not represent a real-world IoT network.
Alternatively, it could indicate that the initial Global Model was close to the final collabo-
rative model, a detail not explored in the study. Similar results have been found in a series
of studies that explore the use of FL. and anomaly detection models for Intrusion Detection
in large scale IoT networks without considering the impact of Global Model initialisation
and data distribution method [21H23].

3 Approach

Our work focuses on large-scale IoT systems where applications are typically implemented
as containers on Edge devices. These applications are managed by container Orchestration
platforms such as Kubernetes E City-scale IoT systems, such as Toshiba’s UMBRELLA
project EI, rely on such platforms to automate deployment, scaling and management of
applications and services across the network of devices. For our experiments, we utilised a
network of UMBRELLA nodes, which are a key component of the platform acting as an
Edge device with interchangeable modules for various radios and sensors. The computing
power in the node is provided by Raspberry Pi 34+ and Jetson Nano.

Our approach uses an Al Anomaly Detection method suitable for detecting novel at-
tacks. The approach trains a model on the normal state of an edge device. The model
reproduces feature vectors (denoted F'V') extracted from events in audit logs generated on
the Edge device. Ideally, the normal feature vectors are closely reproduced resulting in a
small reconstruction error while abnormal feature vectors result in larger reconstruction er-
rors. Threshold techniques are then used to classify among three states {normal, uncertain,

Thttps://kubernetes.io/
2https://www.umbrellaiot.com/



anomaly}.

This methodology is also termed semi-supervised learning, as it primarily requires normal
data for training the model, thereby eliminating the need for annotated data from predefined
attacks. This approach is notably advantageous due to the sporadic nature of attack data
occurrences, alongside the challenges and elevated costs involved in acquiring annotated
attack data. Additionally, in contrast to traditional supervised learning methods, our semi-
supervised model can detect novel attacks, thereby enhancing its applicability in the evolving
landscape of cyber security threats.

Figure [I] depicts the approach performing intrusion detection on the edge to detect
malicious activity by a container. The model is trained on normal data. When the difference
between a feature vector and its reconstruction is above a threshold, an anomaly is triggered.

Event Train Anoinaly
Log Al/ML
N T E e e - IIII - Q - el el el e
Feature Extraction Feature Vectors Model Reconstructed
Feature Vectors

Autoencoder

Figure 1: Approach Overview

There exist various tools capable of logging container activities, such as Falcdﬂ However,
these tools do not capture host-level events, which led to our selection of the Linux Audit
Daemon (auditd), a component of the Linux Auditing System that writes audit records to
the disk. Containers running on the host system execute system calls to interact with the
host OS and perform various activities - auditd records these system call events. Each edge
device is configured to log audit events and independently train its specific model, effectively
implementing a unique model for each edge device. The methodology for federating these
models is detailed in Section [3.41

3.1 Feature Extraction

Feature extraction consists of the following steps:

1. Raw auditd event logs are collected and filtered to retain events with a SYSCALL
type. Most events have a SYSCALL type and are generally more informative than
other event types.

2. Given a window length (in seconds), all events within the window are converted into
counts for each SYSCALL type producing a feature vector of numbers. The feature
vector length is 398, based on the number of different SYSCALL types El

3https://falco.org/
4https://android.googlesource.com/platform/external /qemu/+/emu-master-dev/linux-headers /asm-
arm/unistd-common.h



3. The window start is advanced by the overlap and the process is repeated to produce
another feature vector. The features are saved as a CSV file to be used later for
modelling.

Figure [2] depicts how the features are determined from an event log. There are similar
approaches to extracting event-based features from log files. For example, KubAnomaly
counts 17 SYSCALL types and 14 root access event types to produce feature vectors of length
31. Our approach uses all SYSCALL types producing feature vectors of length 398.

Event Log

EventLog Time SYSCALL
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El 10 read Event Based Features

E2 11 write § read execve chmod  fork write
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Figure 2: The selection of event based features, where the occurrence of each event’s
SYSCALL type is counted.
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Figure 3: The feature count is dictated in part by a sliding window passed over the events
(example shows window length of 6 seconds with 50% overlap)

In the audit.log files, the occurrence of each event type within a sliding window of
specified length is counted. This is illustrated in Figure It is important to select an
appropriate window length and overlap for the sliding window. If the sliding window is too
short, it does not capture enough information for the model to make an accurate inference.



On the other hand, if it is too long, it will respond to an attack more slowly. The overlap
impacts the amount of data required to be processed and therefore has to be restricted as
the target Edge devices have limited computing power. The overlap also partially addresses
scenarios that span across adjacent windows. After some experimentation, it was found that
a window length of 30 seconds and a 50% overlap (15 seconds) performs most effectively.

It is important to mention that the feature vectors in our analysis implicitly encode
temporal information. When an anomaly is detected, the starting time of the window
in which it occurred offers a rough estimation of the timing of the anomaly. While this
temporal aspect is significant, it is just one facet of the broader context that a security
analyst would require. Additional details such as associated users, processes, sockets, files,
etc., are also crucial for a comprehensive analysis. Ideally, the output of the AT model would
encompass this wider range of information to improve explainability. Addressing this aspect
comprehensively remains an area for future work.

3.2 Model architecture

The auto-encoder model has three layers: input, hidden, and output. The input and output
are also known as the encoder and decoder respectively. The hidden layer size is modified
until the best performance is found. The input and output layer sizes are determined by
the size of the dataset generated by the data pipeline. The final sizes for the auto-encoder,
as depicted in Figure [4] are 398, 10, and 398 nodes for the input, hidden, and output layers,
respectively.

Input Layer: 398 nodes }— Encodes —°| Hidden Layer: 10 nodes }— Decodes —'{ Output Layer: 398 nodes

Figure 4: Autoencoder Architecture

Once the model has been trained, its output is used to perform inference on the validation
and test data by using a classifier. The reconstruction error does not directly indicate an
anomaly. It is difficult to identify the anomalies using only reconstruction errors because
they keep changing when the auto-encoder is re-trained or updated. Therefore, a classifier
is added on top of the reconstruction error of the auto-encoder to make the final inference
as to whether the data corresponds to an anomaly. In addition, the classifier can work out
the confidence of that final inference.

An upper and lower threshold is also introduced to make the final inference. It is an
anomaly if the reconstruction error is above the upper threshold. If the reconstruction error
is below the lower threshold, it is normal. If the reconstruction error is between the upper
and lower threshold, it is uncertain whether it is an anomaly or a normal.

The reconstruction error is transformed into a value ranging from 0 to 1 through a
LogisticRegression model, trained on the annotated data to make a robust classification.
The value indicates the confidence level of an anomaly. It is highly likely to be an anomaly
when the value is close to 1 and otherwise when it is close to 0.

After a series of experiments, we found that the best thresholds are 0.8 for the upper
threshold and 0.5 for the lower threshold.



3.3 Dataset

Obtaining a suitable dataset with a sufficient number of annotated attacks (for evaluation,
not training), including a container escape attack, proved to be difficult. Ultimately, we
generated the dataset from custom experiments. Figure [5] taken from our previous work
in @ and produced here for clarity, depicts how the edge devices were configured to generate

the dataset.
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Figure 5: Edge Configuration for Container Escape Dataset

All experiments use the same workload with a webserver and database (Grafana/Prometheus)
collecting sensor data from three devices. Two of the five containers were configured to per-
form a container escape and launch an attack. Three scenarios are used as follows:

e Scenario A (DoS) where a container escape is performed using a host shell that
launches a denial of service (DoS) attack. This attack involved approximately 20
system calls and many of the system calls were unusual compared to the normal be-
haviour. This attack would likely be easier to detect as an anomaly.

e Scenario B (Privesc), where a container escape is writing to host permission file grant-
ing no password sudo permission to the user (i.e. launches a privilege escalation at-
tack). This attack involved approximately 10 system calls and many of the system
calls were benign compared to the normal behaviour. This attack would be more
difficult to detect as an anomaly.

e Scenario Normal, where a benign container without any escape/attacks is used.

Each experiment runs for 15 minutes and all system calls associated with the container
escape and attack last no more than 20 seconds, usually spanning across windows. There are
256 experiments. Feature extraction results in 58 normal vectors and 2 anomalous vectors
per experiment. In total the dataset contains 14848 normal vectors, 128 (DoS) anomalous
vectors, and 128 (Privesc) anomalous vectors.



A centralised model was trained using only normal data with anomalous and normal
data used for testing. The batch size is set small to make the model more sensitive to each
instance. The training parameters used were batch size: 10, patience: 30, epoch: 10000.

Figure [6] presents the reconstruction errors on a test sub-dataset of Scenario DoS. It
contains attacks and higher reconstruction errors. It can be seen that the reconstruction
errors on the anomalies are larger than the reconstruction errors on the normal data, which

indicates that the auto-encoder is trained well and the overall architecture is suitable for an
IDS.
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Figure 6: Reconstruction error on test sub-dataset associated with Scenario A

3.4 FL Implementation

The implementation of FL in our study is structured into three distinct phases:

1. Pre-training or Instantiation of the Auto-Encoder: We conducted three sepa-
rate experiments in this phase. In two out of the three experiments, the auto-encoder
undergoes pre-training centrally using a specific training dataset. For the remaining
experiment, the auto-encoder is instantiated without any pre-training.

2. Federated Learning and Model Updating: The model undergoes re-training and
updates following the FL methodology. Each FL round involves the model being
re-trained separately on each of the two client devices. Post re-training, the model
is transmitted to the server. Here, the server performs an aggregation of all client-
provided models to update the Global (aggregated) model. This updated aggregated
model is then distributed back to each client, marking the commencement of a new
FL round.

3. Model Assessment: The final phase involves evaluating the model using test data.



------------ = Server oo

Model
Aggregation log*

Client 1 ' Client 2
Model Model
Training log ' Training log
v
Test Data
*accessed via bash log output only at this stage Outputs

Figure 7: Framework of the FL experiment

Figure [7] depicts the FL workflow. Models at the client-side and server-side, along with
training and aggregation logs, are saved in each FL round. Finally, training is performed
and evaluated using the test data.

4 Evaluation

This section evaluates the approach with the dataset using a centralised and then federated
models. We also describe the scores used to evaluate the models’ performance.

4.1 Performance Scores

The models are evaluated using several traditional scores, provided here for convenience.
The result of a prediction attempt for binary classification falls into one four cases, where
we treat anomaly as being positive and normal as negative.

e TP true positive when the prediction is anomaly and is actually anomaly.

e TN true negative when the prediction is normal and is actually normal.



e FP false positive when the prediction is anomaly but is actually normal.

e FN false negative when the prediction is normal but is actually anomaly.

For a set of predictions from some experiment, these numbers are typically combined
into an aggregate score as follows.

e Accuracy:
TN +TP

TP+ FP+TN+FN

The accuracy is the fraction of predictions the model got right on all samples, including
normals and anomalies.

e Precision:
TP

TP+ FP
The precision is the proportion of positive identifications that was actually correct.

This score accounts for when the model incorrectly identifies some negatives as posi-
tives (i.e. false positives).

e Recall:
TP
TP+ FN
The recall is the proportion of actual positives identified correctly. This score accounts
for when the model fails to identify some positives (i.e. false negatives).

e F-score: .
Precision x Recall

Precision + Recall

The F-score combines the precision and recall of the model, and it is defined as the
harmonic mean of these scores.

For imbalanced datasets, where the normal class is much larger than the abnormal class,
the accuracy is considered a poor score because it includes TNs that skew the result. A
simple (but poor) model can just always predict normal and achieve a very high accuracy.
Importantly, this is the situation for our anomaly detection dataset where the number
of normal vectors is much larger than abnormal vectors (in our case accuracy = 0.983
(14848/15104)). The precision and recall do not include TNs and are more robust to the
class imbalance issue. Which to prefer depends on which error costs more, a FP or a FN
(this requires a subjective assessment). Instead of assigning costs, the F-score is biased
towards the smaller of recall and precision. It is a somewhat pessimistic score of the model
in this sense. The F-score does not assume a cost for errors and is also robust to the class
imbalance issue. For these reasons the F-score is often preferred. Our results provide all
four scores noting that the F-score is more appropriate for evaluation.

In our study, we have three classes {normal, uncertain, anomaly}. Though there are
methods to adapt the scores to multi-class classification problems, for the purpose of eval-
uation, we simplify this into a binary schema based on the assumption that ‘uncertain’
predictions will undergo human investigation.

Consequently, in instances where the prediction is ‘uncertain’ but the true label is ‘nor-
mal’, we categorise such predictions as ‘“True Negative’. This categorisation is based on



the rationale that human intervention would accurately identify these instances as ‘normal’,
and this information would subsequently be utilised to refine the training dataset. On the
other hand, when a prediction is ‘uncertain’ but the actual scenario is ‘abnormal’; we clas-
sify these as ‘False Negative’. This is because by the time human examination occurs the
anomalous activity would likely have already manifested. Moreover, such instances are not
incorporated into the training set since the model relies on normal data only.

4.2 Centralised Model Results (No FL)

We train a single autoencoder model, based on the architecture provided in Section[3.2] using
the training data and evaluate it using the unseen test data. This situation assumes all data
would be available, with no Federated Learning involved. As mentioned in Section [3.3] the
training was run for 10000 epochs, with patch size 10 and patience 30. Figure 8| presents
the confusion matrix of the centralised model on the test dataset.
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Figure 8: Centralised Model Confusion Matrix

The model generated can identify most anomalies correctly (21 out of 23 anomalies).
The model only mistakenly recognises one anomaly as normal and makes four uncertain
predictions. It is assumed that the uncertain predictions will be sent to human experts for
further analysis and data labelling to train the model further to improve its performance.
The ‘human-in-the-loop’ would essentially act as a separate ‘asynchronous’ node in the Fed-
erated Learning architecture. This scheme would improve the performance of the approach
making it robust against attacks that trigger uncertain responses by the model. It should be
noted that even though the model did not correctly classify one of the anomalies, it would
likely not have missed the attack, as an attack is made up of several anomalies.

Table [If shows the performance scores for the centralised model. Given all the data, the
centralised model performs very well for all scores with recall being the lowest (21/23).

Metric Accuracy Precision Recall F-score
Score 0.9922 1.0 0.913 0.9545

Table 1: Centralised Model Scores



4.3 Federated Learning Model(s) Results

To evaluate our FL approach, we focused on three experiments: First, fully train a model
using FL, utilising 100% of the training data and splitting it across the two clients. Second,
pre-train a model with 50% of the training data, then update the model using the remaining
50% of the data split across two clients; and, third, pre-train a model with 90% of the training
data, then update the model using the remaining 10% of the data split across two clients.
The experiments fixed a number of parameters. In particular, we only used two clients and
fixed the training parameters on each client to match those for centralised training. The
output of the experiments was scores for the server model and both client models, based on
the testing set, enabling us to compare FL performance against centralised performance.

4.3.1 Fully Trained

The following sections will provide a selection of results, focusing on overall server perfor-
mance and individual client performance. Figure [9] shows the confusion matrices on the
server side, tested against attack data in the Scenarios A (DoS) and B (Privesc) datasets.
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Figure 9: Fully Trained Server Model Confusion Matrices for scenario A (DoS) and scenario
B (Privesc)

Table [2] shows the scores for the fully trained server model. The results are similar to
the centralised model scores with both the server and clients achieving scores above 90%,
regardless of scenario. There does not appear to be any loss in performance due to the
Federated Learning as compared to the centralised model.

4.3.2 Pre-trained model (90%)

Figure shows the confusion matrices for the 90% pre-trained server model. The server
still performs well for Scenario A. For Scenario B the server scores are slightly reduced (with
15 total uncertain). There are 3 False Positives resulting in a precision score of 0.875.
Table [3| shows the scores for the 90% pre-trained server model. The results clearly show
a difference between Scenario A and B for the client models. For Scenario A the clients



Metric Server Client 1 Client 2
Scenario Scenario Scenario Scenario Scenario Scenario
A B A B A B
Accuracy| 1.0 0.9953 1.0 0.9969 0.9977 0.9938
Recall 1.0 0.9565 1.0 0.9565 1.0 0.9565
Precision| 1.0 1.0 1.0 1.0 1.0 0.9565
F-score 1.0 0.9778 1.0 0.9778 1.0 0.9565

Table 2: Fully Trained Server Model Scores
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Figure 10: Pre-trained (90%) Server Model Confusion matrices

perform very well. For Scenario B, with the exception of accuracy, the scores are notably
less with F-scores of 0.75. The amount of data used for pre-training in the federated case
appears to be having an impact on performance for the client models.

Metric Server Client 1 Client 2
Scenario Scenario Scenario Scenario Scenario Scenario
A B A B A B
Accuracy| 0.9818 0.9704 0.9795 0.9595 0.9773 0.9564
Recall 1.0 0.913 1.0 0.6522 1.0 0.6522
Precision| 1.0 0.875 1.0 0.8824 1.0 0.8824
F-score 1.0 0.8936 1.0 0.75 1.0 0.75

Table 3: Pre-trained (90%) Server and Client Model Scores

4.3.3 Pre-trained model (50%)

Figure shows the confusion matrices for the 50% pre-trained server model. While the
Scenario A results are still very good, the Scenario B confusion matrix shows a severe decline
in the server models performance. There are 8 FPs and 18 FNs (taking into account the 14



predicted as uncertain).
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Figure 11: Pre-trained (50%) Server Model Confusion Matrix

Table [4 shows the scores for the 50% pre-trained server model. Due to the high number
of FNs, the server model, Scenario B recall score is very low 0.2174% (5/23). This behaviour
is mirrored in the client models with good performance for Scenario A and poor performance

(particularly recall) for Scenario B. The F-scores are correspondingly affected with 0.4737
for Client Model 2.

Metric Server Client 1 Client 2
Scenario Scenario Scenario Scenario Scenario Scenario
A B A B A B
Accuracy| 0.9773 0.9517 0.9864 0.9642 0.9795 0.9579
Recall 1.0 0.2174 1.0 0.4783 1.0 0.3913
Precision| 0.7895 0.3846 0.8333 0.7333 0.7895 0.6
F-score 0.8824 0.2778 0.9091 0.579 0.8824 0.4737

Table 4: Pre-trained (50%) Server and Client Model Scores

4.3.4 Analysis

The experiments conducted reveal significant insights into the performance dynamics of
FL in intrusion detection for IoT ecosystems. A key observation is the impact of data
distribution and the proportion of data among clients and servers on model efficacy.

Client Data Proportion and Model Performance: The varying performance in
scenarios A and B, across different training setups (90% pre-trained vs 50% pre-trained),
underscores the influence of data distribution among clients. When a substantial portion of
the training data (90%) is used in the pre-training phase, the model retains a higher degree of
learning, leading to better performance even after FL updates. On the other hand, with just
50% of data in the pre-training phase, the model’s ability to learn and adapt deteriorates,
resulting in lower accuracy, especially in more complex scenarios like B.



Fully Trained vs Partially Trained FL Models: The results indicate that fully
trained FL models (i.e. no pre-training) outperform partially trained ones. However, this
comes in contrast with the previous observation. A plausible explanation is that in our
experiments we distributed the dataset among only two clients. As a result, the two clients
had an abundance of data to train local robust models that were close to each other. Hence
the FL aggregation resulted in a high-performance model. If the data were split amongst
more clients, this would have resulted in worse performance due to the limited number of
samples per device.

Role of Data Diversity and Complexity in FL: The distinct performance in de-
tecting different types of attacks (Scenario A vs Scenario B) suggests that the complexity
and diversity of the data play a crucial role. Scenario B, being more challenging, highlights
the limitations of FL models when dealing with intricate attack patterns, especially when
the FL updates are based on a smaller subset of data.

Metrics Sensitivity to Federated Learning Dynamics: The consistent accuracy
across different FL setups, despite varying FPs and FNs, highlights the limitations of us-
ing accuracy as a sole metric in imbalanced datasets typical in cyber-security contexts.
Precision, recall, and F-scores provide a better understanding of the model’s performance,
especially in FL environments where data distribution and the proportion of training data
can significantly impact these metrics.

5 Conclusion

This Chapter presented an autoencoder-based Intrusion Detection System deployed using
a Federated Learning framework, aimed at detecting intrusions in large-scale IoT systems.
We demonstrated the effectiveness of our model in a decentralised, privacy-preserving setup.
The critical insights gained from the comparison of fully trained and partially trained FL
models underscore the significant impact of data distribution among clients as well as the
number of clients on model performance. Our observations suggest that the fewer the num-
ber of clients participating in an FL setup, the higher the final performance due to the
limited diversity among the clients. Furthermore, starting with a robust pre-trained model
notably improves the overall performance. Consequently, a promising direction for future
work involves the exploration of FL “islands”, where a small number of clients contribute
to the island’s Global Model. Each island would then contribute to a higher-level FL ag-
gregation, moving towards Hierarchical Federated Learning structures.

By training our models on normal system behaviour and utilising feature vectors from
audit logs in real-world scenarios, we developed a resilient IDS capable of adapting to the
evolving nature of cyber threats. The study not only reinforces the viability of FL in cyber
security but also provides a foundation for future research in optimising FL deployment
strategies for more complex and diverse IoT ecosystems.

In addition, with the utilisation of an “uncertain” class, we note the inability of auto-
mated solutions to address all scenarios and emphasise the importance of a “human/expert-
in-the-loop”. Audit logs that trigger the uncertain class can be forwarded to human experts
for in-depth analysis. Human expertise complements the automated detection process, thus
enhancing the overall cyber security resilience of large-scale IoT systems.

In conclusion, the research contributes to the growing body of knowledge in Al-driven
cyber security, offering a practical and effective solution for intrusion detection in large-scale
IoT systems. Our work opens avenues for further exploration in the field, particularly in



understanding the nuances of Federated Learning in diverse and dynamic cyber security
environments.
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