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Abstract—Millimetre Waves (mmWave) systems have the po-
tential of enabling multi-gigabit-per-second communications in
future Intelligent Transportation Systems (ITSs). Unfortunately,
because of the increased vehicular mobility, they require fre-
quent antenna beam realignments - thus significantly increasing
the in-band Beamforming (BF) overhead. In this paper, we
propose Smart Motion-prediction Beam Alignment (SAMBA), a
MAC-layer algorithm that exploits the information broadcast
via DSRC beacons by all vehicles. Based on these information,
overhead-free BF is achieved by estimating the position of
the vehicle and predicting its motion. Moreover, adapting
the beamwidth with respect to the estimated position can
further enhance the performance. Our investigation shows that
SAMBA outperforms the IEEE 802.11ad BF strategy, increasing
the data rate by more than twice for sparse vehicle density
while enhancing the network throughput proportionally to the
number of vehicles. Furthermore, SAMBA was proven to be
more efficient compared to legacy BF algorithm under highly
dynamic vehicular environments and hence, a viable solution
for future ITS services.

Keywords—Connected Autonomous Vehicles, mmWave,
Beamforming, Heterogeneity, MAC layer, Vehicle-to-Everything
Communications.

I. INTRODUCTION

Connected and Autonomous Vehicles (CAVs) will act as

key entities for Next-Generation Intelligent Transportation

System (ITS) applications and services. Vehicles being grad-

ually equipped with more sensors, will have the potential

of enhancing transportation safety and reaching full auton-

omy [1]. Sensory data distributed to the surrounding vehi-

cles can be used to better understand the traffic conditions

and improve navigation quality. The same data, shared with

the infrastructure network, can exploit cloud computing

capabilities for efficient resource management [2], extend

the network scalability and provide access to essential

applications (e.g., spectrum sharing, dissemination, etc.) [3].

The next-generation automotive applications will require

gigabit-per-second data rates and tactile-like end-to-end

delays, introducing very strict Quality of Service (QoS) re-

quirements [4]. These QoS constraints cannot be adequately

supported with Dedicated Short Range Communications

(DSRC), as IEEE 802.11p/DSRC can achieve up to 27 Mbps

with modest delay performance [5]. Alternatively, Millimetre

Wave (mmWave) communications can effectively fulfil these

requirements. However, mmWave propagation character-

istics, combined with the increased mobility in vehicular

environments, lead to performance degradation due to

Doppler shifts and frequent misalignments.

As a solution, we propose Smart Motion-prediction Beam

Alignment (SAMBA) algorithm. Our algorithm, operates in

a heterogeneous manner combining DSRC and mmWave

Radio Access Technologies (RATs) and leveraging from the

position and the motion information broadcast from a CAV,

it enhances the Beamforming (BF) process. SAMBA, re-

ducing the beam misalignments under the highly dynamic

vehicular environments, manages to improve the mmWave

system performance. Providing solutions to problems aris-

ing from other BF techniques, can make the adoption of

mmWaves for vehicular communications easier.

Referring to the existing mmWave standards, the BF pro-

cedure requires a bidirectional frame exchange, operating

with quasi-omnidirectional patterns in an beam-sweeping

manner. However, higher vehicle velocities introduce an

increased Doppler spread and traditional BF processes

fail [6]. For lower speeds and Line-of-Sight (LOS) links, the

Doppler shift can be corrected with frequency offset cor-

rection techniques. However, the beam-sweeping increases

dramatically the delay. According to [7], the response time

required from the chip to change the phase and the gain of

a phased-array antenna is roughly ≃50 ns, proving that the

BF delay is related with the number of frames exchanged.

Mobile systems require frequent beam steering. This

leads to significant in-band overhead. Leveraging from

the idea of heterogeneity, zero in-band overhead can be

achieved. Authors in [8], train the antenna beams by pas-

sively overhearing frames in the legacy band of 2.4 /5 GHz

and estimating the Angle-of-Arrival (AoA). Though, in dense

urban environments, AoA is not accurately estimated due to

the multipath effects. Feedback information from a vehicle,

sent over DSRC links in the form of beacons, can be

facilitated to overcome that. In [9], a vehicle transmitting

its initial position and speed, provides feedback for the

infrastructure-side BF. However, position errors were not

taken into account, vehicle speed was constant and no

complex manoeuvres were considered limiting the utilisa-

tion of the algorithm on a straight-road scenario. Similarly,

SAMBA can enhance the performance by fusing the posi-

tion, motion and velocity data from a vehicle, making it

able to operate on wider scale complex road networks.

A certain level of accuracy should be achieved when

basing the system performance on a node-localisation sys-

tem. The most inaccurate measurement is related to the

position. Commonly acquired via Global Positioning System



(GPS), it is affected by additive errors. Especially in urban

environments, street canyon effects can be observed due

to the height of the buildings - thus reducing the position

accuracy. However, the accuracy can be significantly im-

proved by fusing the position data with the motion infor-

mation of a vehicle, achieving centimetre-accuracy in urban

areas [10]. Other approaches manage to achieve accurate

lane positioning based on sensor networks and inter-vehicle

communications (as shown in [11]). CAVs equipped with

numerous sensors, RATs, and increased processing power

will be able to acquire and feedback their accurate position.

The above serve as a proof of the capacity required for the

level of the position accuracy necessary for our algorithm.

This paper is organised as follows. In Section II, the

system model, the integration of IEEE 802.11ad into ITS

applications, and the problem motivation are introduced.

The proposed algorithm, the models and the assumptions

are presented in Section III. Section IV, presents the sim-

ulation framework and SAMBA performance is compared

with the IEEE 802.11ad BF. Finally, our work is summarised

in Section V and ideas for future research are mentioned.

II. SYSTEM MODEL AND PROBLEM MOTIVATION

Road Side Units (RSUs) are fitted along the side of the

road or at essential locations (e.g., intersections), usually

mounted on street light poles or traffic lights, 6−10 m

higher than the level of the vehicles. In such manner,

blockage from other vehicles can be avoided and LOS links

can be established, as analysed in [9]. Moving vehicles need

to frequently realign their antenna beams either with the

serving RSU or with another vehicle. In this work we will

focus on a Vehicle-to-Infrastructure (V2I) scenario.

A. Traditional Beamforming for Vehicular Networks

Consider a scenario that utilises only mmWaves RAT and

two devices, a RSU and a vehicle. The distance between

them, combined with the mmWaves propagation charac-

teristics, imply the necessity for BF to maximise the data

rate. Referring to IEEE 802.11ad [12], the dominant standard

for mmWaves, the BF training requires a bidirectional frame

exchange. The MAC layer of IEEE 802.11ad introduces the

concept of virtual antenna sectors, discretizing the azimuth

plane based on the antenna beamwidth [12].

The BF training is split in two different intervals. During

Sector Level Sweep (SLS) interval, the RSU beams are trained

transmitting directional frames on each sector in a sweep-

ing manner. The vehicle, listening quasi-omnidirectionally,

transmits feedback information for each frame and the best

RSU sector is chosen based on the highest Signal-to-Noise

Ratio (SNR). Later, during Beam Refinement Protocol (BRP),

the vehicle chooses its best antenna sector, similarly as

before, establishing a directional link. Finally, the beams

are further refined. Testing multiple configuration on the

already established link, the quasi-omnidirectional imper-

fections are avoided and the antenna array configurations

can be fine-tuned maximising the achievable data rate.
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Fig. 1. The number of non-trained beams (due to collisions) and the BF
delay, can severely impact the performance of vehicular communications.

When the vehicle number increases, the responding in-

terval within SLS is slotted (Association Beamforming Train-

ing (A-BFT)). Each vehicle is allocated one timeslot based

on a uniform random distribution with values U (4,8) [12].

During this slot, the vehicle transmits its feedback informa-

tion, further refining its beams later during BRP.

B. Challenges of Legacy BF Strategy for Future ITSs

The above BF procedure is performed every one Beacon

Interval (BI) [12]. BI length is limited to 1000 ms and

can be optimised for each environment. For example,

indoor environments with zero or low mobility require a

value within the range of 100 ms. Longer intervals reduce

the management frame transmission rates and increase

throughput, however the system becomes intolerant to

Doppler Shift. Vehicular communications require shorter

intervals (<30 ms), to avoid severe performance degradation

due to beam misalignments from the increased mobility.

The slotted A-BFT with the random slot allocation leads

to collisions. Also, the predefined number of slots (≤ 8 slots

[12]) is insufficient for urban scenarios, as more than eight

vehicles can convene within a RSU coverage region. The

probability of collision within a A-BFT slot can be defined

as follows:

Pcol = 1−
x! (x −1)!

(x − v)! (x + v −1)!
(1)

where x is the number of slots and v is the number of

vehicles. The probability of avoiding a collision is the ratio

of the combinations when only one vehicle is allocated per

slot
(x

v

)
, over the number of vehicles allocated to a number

of slots
(x+v−1

v

)
. Pcol is the complement of the above.

The collision probability during a A-BFT slot dramatically

increases as the number of vehicles is increased (Fig. 1a)

- thus, significantly reducing the trained antenna beams.

Furthermore, a full-circle sector sweeping is not always

necessary as some sectors might point towards a direction
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Fig. 2. SAMBA System design: Position, velocity and motion information
encapsulated in DSRC beacons are used for smart BF. RSUs predict the
motion of the vehicle and its position and align their beams accordingly.

where no vehicles exist. Based on that, an overhead analysis

for IEEE 802.11ad BF technique was introduced in our

previous work [13], deriving formulas to approximate the

delay introduced for N number of vehicles. The results are

shown in Fig. 1b. The aforesaid prove that legacy BF is

incapable of fulfilling the strict QoS requirements of Next-

Generation ITSs for tactile-like end-to-end delays (<10 ms)

and gigabit-per-second throughput.

III. SAMBA: ENHANCED BEAMFORMING FOR V2I LINKS

To solve the previously mentioned problems, we pro-

posed the SAMBA algorithm. Leveraging from the position,

the velocity and the motion information broadcast, SAMBA

can provide an overhead-free BF, reduce the association

delays, minimise the beam misalignments and enhance

mmWave performance. SAMBA operates as shown in Fig. 2.

On the infrastructure side, and as shown in Alg. 1, SAMBA

algorithm considers a road network with N number of

vehicles, where N ≥ 1. The information received from a

vehicle is used to decide whether the vehicle has moved,

compared to the previously stored position. With respect

to all the positions, the RSUs decide their serving vehicles,

i.e., each vehicle is served by its closest RSU. When an

updated position is received, the serving RSU aligns its

beam accordingly. Later, the RSUs can effectively track

the movement of each vehicle predicting its motion and

position. The update interval for SAMBA was predefined at

30 ms. By that, a comparable BI with IEEE 802.11ad is used

and increased Doppler shift can be avoided.

On the vehicle side, the vehicles transmit DSRC beacons

to all RSUs in range encapsulating their velocity, their mo-

tion data (based on the vehicle motion dynamics) and their

estimated position. Beacons are broadcast every 100 ms

(DSRC beacon interval) and the acquired information is

updated periodically. All CAVs, as smart entities of an ITS,

can a priori know the positions of the RSUs. To that extent,

each vehicle aligns its beam towards the closest RSU.

When more than one vehicles are within the coverage

region of a RSU, a dynamic channel time allocation ac-

cess mechanism is used, that implements a polling based

channel access, similar to the one of IEEE 802.11ad [12].

Using the same mechanism for both approaches, it can

be ensured that the delays introduced from the resource

allocation scheme are negligible for our results.

Algorithm 1 SAMBA Algorithm: Infrastructure Side

Require: Vehicles encapsulate position, motion and velocity in beacons
Ensure: RSUn has not changed after every update interval.
1: while N number of Vehicles within the network range (N ≥ 1) do
2: if New beacon received then
3: Find RSUn for each vehicle ⊲ RSUn →C losest RSU
4: if Recei vedpos 6= Ppos then
5: Beamforming: Align RSUn beam based on Recei vedpos

6: else
7: Predict current position of vehicle Ppos

8: Beamforming: Align RSUn beam based on Ppos

9: end if
10: else
11: repeat every Update Interval ⊲ 30 ms
12: Predict current position of vehicle Ppos

13: Beamforming: Align RSUn beam based on Ppos

14: until New beacon is received
15: end if
16: end while

A. Mobility Model and Position-based Beam Alignment

An urban scenario can be accurately represented by the

synchronised flow traffic model [14]. It represents a contin-

uous traffic flow, with no significant stoppages, where ve-

hicles perform random manoeuvres (braking/accelerating,

changing lanes) and tend to synchronise their movement.

Velocity varies over time and is averaged around a mean

value, following a Normal distribution, i.e., s ∼ N (savg,2).

Velocity error can be easily corrected by means of data

fusion techniques and was not considered in this model.

The estimated vehicle position is affected by an additive

error. A typical mean error for GPS is about 3 m with a

standard deviation of roughly 1 m [15]. As discussed though,

increased accuracy can currently be achieved by fusing

CAVs sensory data, even under urban environments [10].

The estimated position, calculated at the vehicle side, is

given as Epos = Rpos + epos, where Rpos is the real position

of the vehicle and epos ∼ logN (µ,σ2
s ) is the log-Normal

error. Terms µ and σ are the non-logarithmetised values

for the mean and standard deviation of the log-Normal

distribution. Knowing Epos, a RSU can steer its beam

accordingly by calculating the angle k (Fig. 3a) with respect

to the reference plane (from the trigonometric properties).

B. Vehicle Motion Dynamics and Motion-Prediction

CAVs equipped with Inertial Measurement Unit (IMU)

sensors (e.g., magnetometers, accelerometers, gyroscopes),

will be able to measure the motion changes of a vehicle.

The acquired sensory data, can be combined using data

fusion algorithms. Their output is the angular velocity of the

vehicle, measured as rads−1, in three different axis (yaw ωy,

pitch ωp, roll ωr). Sensory data errors are within the range

of 0.2°−1° [10] and does not introduce significant errors in

our algorithm, therefore they were considered as negligible.

Consider a constant angular speed. A vehicle in motion

follows the surface of a sphere (when observed within one

time interval). Vehicles change significantly their direction

on the vertical axis, as they are changing their direction

on the road plane. So, in this work, vehicles and RSUs
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will be considered as 2D objects, positioned on a plane.

In this case, a vehicle follows the perimeter of a circle and

its motion can be predicted based on ωy, Epos, and savg.

With respect to Fig. 3b, a vehicle moving from A to B ,

will drive a distance of lÙAB pr. The distance travelled and

its angle βpr, can be defined as follows:

βpr = mÙAB = 2ωy tpr lÙAB pr = s tpr (2)

where tpr is the time elapsed from the latest beacon and s

is the velocity of the vehicle. Based on the circle properties

and using (2), the radius of the circle Rpr, and the distance

AB pr between points A and B , are given as follows:

Rpr =
lÙAB pr

πωy tpr
AB pr = 2Rpr sin(ωy tpr) (3)

Finally, the predicted position Ppos
1 is calculated as:

Ppos(x, y) =

{
Ppos(x) = Epos(x)+ AB pr sin(βpr)

Ppos(y) = Epos(y)+ AB pr cos(βpr)
(4)

C. SNR, Antenna Gain, and Link Budget Analysis

Aligned beams imply higher SNR. The wireless standards

define sensitivity thresholds for each Modulation and Cod-

ing Scheme (MCS). Each MCS can be associated with the

SNR to optimise the data rate. The SNR is expressed as the

ratio between the received power over the noise power, i.e.,

SNR = PRX/Pnoise, and is affected by the antenna gains.

The antenna gain is related to its beamwidth. In this

work, an ideal beam is assumed with uniform gain and

no sidelobes. The directivity of an antenna is equal to

D = 4π/ΩA, where ΩA is the beam solid angle [16]. For

our model ΩA ≈ θ1θ2, where θ1 and θ2 are the half-

power (−3 dB) beamwidths of the elevation and azimuthal

polarisation planes respectively. The antenna gain G is

proportional to the antenna efficiency η and its directivity,

and is given as G = ηD [16]. For an ideal antenna, the

efficiency is equal to 100% and θ1 = θ2, so the beamwidths

in both polarisation planes become equal to the antenna

beamwidth θ. From all the above, G is given as follows:

G(θ) ≃ 4π/θ2 (5)

1The model can be extended to a 3D scenario, by modifying (2), (3)
and (4) to fit a spherical object.

The PRX is equal to [17]:

PRX = PTX +GRX +GTX −PL (6)

where PTX is the transmission power and GTX-GRX are

the antenna gains for the transmitter and the receiver

respectively. In this work, equal beamwidths and thus equal

gains were considered for both antennas. The PL is the

path-loss component and can be calculated as:

PL = 10n log10 d +Catt + Aatt +Ratt +Sf (7)

where n is the path-loss exponent and d is the separa-

tion distance between the RSU and the vehicle. Aatt and

Ratt are the average atmospheric and rain attenuation,

respectively. Catt represents the channel attenuation for a

mmWave LOS link at 60 GHz in an urban environment,

measured at 20 m [17]. Finally, Sf is a random shadow fading

of the channel and it follows a log-Normal distribution

Sf ∼ logN (0,σ2
SF ) with σ= 5.8 [18].

Finally, Pnoise is as follows:

Pnoise = Nfl +10log10 B +Nfig (8)

where Nfl is the noise floor value, Nfig is the noise figure,

and B is the channel bandwidth. For a given SNR, the most

appropriate MCS can be found comparing the sensitivity

thresholds with the SNR, and choosing one able to com-

pensate with the noise level. For this work, seven MCSs

were used based on IEEE 802.11ad standard [12].

D. Beamwidth Adaptation to Maximise the Data Rate

Consider a scenario where a vehicle travels on a road,

approaching the RSU from distance, passing by and fending

off until it is outside of the coverage region. It is observed

that the beam covers a much wider area at its edge. A wider

beam implies a wider beamwidth and consequently low

antenna gains and SNR. To maximise the performance, an

optimal solution is narrower beams away from the RSU,

increasing the beamwidth as the vehicle gets closer.

As SAMBA relies on the position information, the error

introduced will lead to misalignments for very narrow

beams. From geometry it is know that the incentre is the

centre of triangular area and is equally spaced from the

beam edges. To that extent, adapting θ accordingly, the

vehicle can be positioned at the centre of the beam.

Centring the vehicle with respect to the beam edges will

maximise the data rate and minimise the misalignments

compensating with the random errors. To do so, the incen-

tre point is assumed to be Epos and din is the distance from

the RSU. To maximise the data rate, the highest MCS should

be used, i.e., the sensitivity threshold U of the highest MCS

is greater than the SNR. The above can be expressed as:

θ̂ = arg max
θ

{
Di (din, θi )

}

s.t. U ≥ γi, θi > 0, ∀i ∈ {1, ..., N }
(9)

where θ̂ is the adapted beamwidth, Di is the MCS data

rate, γi is the given SNR for a position and, finally, N is the

number of required beam realignments.



TABLE I
LIST OF SIMULATION PARAMETERS.

Parameter Value

Carrier Frequency fc 60 GHz

Bandwidth B 2.16 GHz

Path-Loss Exponent n 2.66 [19]

Atmospheric Attenuation Aatt 15 dBkm−1

Rain Attenuation Ratt 25 dBkm−1 (in the UK)

Channel Attenuation Catt 70 dB [17]

Transmission power PTX 10 dBm

Noise Figure Nfig 6 dB

Noise Floor Nfl −174 dBm

BI IEEE 802.11ad 30 ms

DSRC beacon interval 100 ms

Position update interval 1000 ms

RSU beams

Vehicle

Beams

Fig. 4. System level simulation scenario: Vehicles drive around a Manhat-
tan Grid-like road network and the system performance is evaluated. The
darker beam area represents the coverage region blocked by the buildings.

IV. PERFORMANCE EVALUATION

A. Simulation Framework

As shown (Fig. 1), IEEE 802.11ad performance degrades

significantly as the number of vehicles increases. SAMBA,

having zero in-band overhead, is expected to outperform

IEEE 802.11ad for a large number of vehicles. To that extent,

SAMBA performance will be compared with the legacy BF

technique being evaluated under various scenarios with

different number of vehicles, velocities and position errors.

We utilised a 200 m×200 m sized Manhattan Grid road

network, consisting of five horizontal and perpendicular

roads (Fig. 4). Each road is formed by four 3.2 m-wide lanes

(2 for each direction). The RSUs are positioned at the top-

right corner of each building block on the same plane as the

vehicles. The distance between two RSUs is ~48 m. These

dimensions and RSU positioning were chosen, in order to

have an overlap area between the beams so the vehicles

are always within the coverage region, avoiding blockages

from the buildings. The motion of the vehicle is random as

described in Sec. III-A. A seamless handover was assumed

between the RSUs. The vehicle position error is between 1-

3 m, following a more conservative approach compared to

the centimetre accuracy presented before. RSUs positions

are a priori known, so no position errors are introduced

for them. Finally, when the beamwidth adaptation was not

considered, the constant angle was set to 15° and Beacon

Delivery Ratio (BDR) is set to 1 (no loss). The rest of the

simulation parameters can be found in Tab. I.

B. Simulation Results

At first, the average data rate of SAMBA and legacy

BF were evaluated for a different number of vehicles and

position errors (given as the average of the MCS data

rates with respect to the achieved SNR). Two different

scenarios were considered for SAMBA (with and without

the beamwidth adaptation). As shown in Fig. 5, SAMBA can

notably improve the system performance as it minimises

the BF overhead. As expected, increasing the position accu-

racy improves the performance. For a position error of 3 m,

without beamwidth adaptation and a very sparse network

(≤ 10 vehicles), both techniques have similar performance.

However, when the vehicle density is increased, the number

of collisions during A-BFT interval is increased as well (as

shown in Fig. 1a), significantly degrading the performance

of the legacy BF. On the other hand, SAMBA can recom-

pense with the increased density as beam alignment is

based on out-of-band feedback information.

Evaluating the throughput performance for the entire

network (Fig. 6), it is observed that SAMBA significantly out-

performs IEEE 802.11ad BF procedure. For dense networks

the collisions during A-BFT interval limit IEEE 802.11ad per-

formance and sightly degrade it under ultra-dense scenarios

(e.g., 200 vehicles). SAMBA, on the other hand, is able to

exploit the network resources a lot better.

With respect to the previous two scenarios, and due

to the physiology of the beams and the behaviour of the

vehicles on a road (approach a RSU from distance, pass by

it and fend off again) the beamwidth should be dynamic

to always achieve the maximum data rate. Therefore, the

beamwidth adaptation used in SAMBA manages to improve

the performance even further (Figs. 5 and 6). Centring the

vehicle within the beam manages our algorithm manages

to compensate with the increased position error (e.g., 3 m),

maximising the SNR and consequently the data rate.

In Fig. 7, SAMBA is evaluated with respect to the DSRC

BDR. The feedback information within the DSRC beacons

are the core of our system making it is obvious that the

performance degrades when BDR is decreased. However,

even with significant beacon loss (≥ 50%) (Fig. 7), SAMBA

manages to achieve the required gigabit-per-second perfor-

mance for future ITS services. This is because vehicles do

not change their direction so often and so, when observed

macroscopically, they tend to move on a straight line

making our algorithm tolerant to the microscopic beacon

drop interval. Finally, for increased density the performance

degrades more due to the increased number of misalign-

ments and consequently the waste of network resources.

Finally, evaluating SAMBA performance with respect to

the velocity (Fig. 8), it was shown that even though the

performance slightly decreases as the velocity is increased,

SAMBA can compensate well with the increased mobility.

Overall, SAMBA achieved improved system performance
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compared to IEEE 802.11ad. Particularly, reducing the po-

sition error will significantly improve the system perfor-

mance. All in all, SAMBA was proven capable of replacing

the legacy BF technique under urban vehicular scenarios.

V. CONCLUSIONS

In this paper, an smart BF training mechanism was pre-

sented. The proposed strategy is able to achieve overhead-

free BF. Exploiting feedback information broadcast over

DSRC links, we introduced an agile motion-prediction

model capable of estimating the position of vehicles and

predicting their motion. The average data rate per vehicle

as well as the network throughput were evaluated, under

an urban scenario. Results showed that SAMBA outper-

forms the legacy sector sweep IEEE 802.11ad BF, as it can

overcome beam misalignment problems and minimize the

BF overhead. What is more, proposing a smart beamwidth

adaptation algorithm that compensates with the vehicle

movement and the beam shape, we managed to enhance

the system performance even further. As such, SAMBA is

a viable solution for the mmWave BF training over next-

generation ITS networks. In the future, the blockage effect of

the vehicles and a inter-vehicle scenario will be considered.
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