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Abstract—The scope of the Sixth-Generation Self-Organized
Networks (6G-SON) advances its predecessor’s capability towards
agility, flexibility, and adaptability. On-demand overlay network-
ing technologies have shown a prominent maturity while coping
with the rising complexity and scale of enterprise, service provider,
and data centre networks. The Software-Defined Networking
paradigm has recently offered Model Driven Programmability,
minimizing network management complexity through automa-
tion and orchestration. However, leveraging Machine Learning-
driven network optimization, a.k.a. Knowledge-Defined Network-
ing (KDN), has still been a domain of interest for the Network
Softwarization research community. In this article, we propose
Intelligent Routing as a Service (iRaaS) architecture as an appli-
cation layer cognitive routing framework for KDNs. iRaaS offers
routing logic customization (i.e., customizing metric function and
path-finding algorithm) and provides an option to include heuristic
parameters from trained models as a part of the metric calculation.
iRaaS sits on the application plane above the knowledge plane
in a KDN stack, thus providing platform- and vendor-agnostic
coupling with existing network infrastructures. This article covers
the scope of iRaaS by using reliability as a heuristic for standard
path-discovery algorithms, e.g., Shortest Path First (SPF) and
Diffusion Update algorithm (DUAL), along with the architectural
specification. We validate our approach through a Proof-of-
Concept deployment.

Index Terms—SDN, KDN, Routing-as-a-Service, Network Pro-
grammability & Automation, Routing API.

I. INTRODUCTION

As computer networks become increasingly complex, man-
ual network optimisations become less feasible. As a result,
many organisations have turned to network automation, which
offers improved efficiency and reduced human error. Network
automation configures, provides, manages, and tests devices
and systems, improves effectiveness and redundancy, and meets
compliance standards. With the active rollout of the 5G ecosys-
tem, Softwarization, Virtualization, Cloudification (RFC 7868),
and Interoperability have been the prominent adaptations. The
5G Infrastructure Public Private Partnership (5G PPP) archi-
tectural working group identifies two new stakeholders in the
domain, namely, Virtualization Infrastructure Service Provider
(VISP) and Data-Centre Service Provider (DCSP). Cloud-
native architecture, a de-facto standard for contemporary Net-
work Functions Virtualization (NFV) deployment, offers agile,
lightweight, and manageable solutions. It seamlessly blends
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DevOps principles and practices, providing a flexible and scal-
able environment for network operations. As a result, consumer
enterprises opt for features like Zero Touch Provisioning (ZTP),
which offloads a significant amount of network administration
burden to the service provider end, where the networks are
centrally managed and orchestrated with predefined policies.
To accommodate this transition, centralised optimisation algo-
rithms (e.g., Routing, Quality-of-Service (QoS)), infrastructure
automation tools (e.g., Ansible, Puppet, Chef), high-availability
protocols (e.g., first-hop redundancy protocol (FHRP), Stateful
Switchover (SSO)), and ML-based network-state prediction
models (e.g., Time-Series analysis, Traffic-classification, route-
prediction) play a crucial role.

As mentioned above, the developments demand that the
underlying telecommunication infrastructure be flexible and
self-aware. Although proposed in IMT-2020, the Ultra-Reliable
and Low Latency Communications (URLLC) verticals have yet
to be achieved entirely. Due to spectrum limitations, further
suppression of the data plane latency has become challenging.
Therefore, research has turned to optimising the control plane
using Routing Optimization, which aims to reduce latency
due to the optimal path-finding process. Nevertheless, RO
enablers such as rapid converging routing protocols, optimal
route-redistribution, route reliability estimation, and Link-State
prediction bring forth scalability and flexibility challenges when
considering deploying multi-vendor, multi-protocol, elastic, and
dynamic networks. Historically, routing protocols (e.g. OSPF,
EIGRP, ISIS) do not support centralised computing models, and
commercially available routing protocols that natively support
a Software Define Network (SDN) and Knowledge Defined
Networking (KDN) model are limited if the present context
is concerned.

In summary, as network automation and orchestration thrive
to fulfil the scale of deployment required to cope with service
quality demand, a centralised routing model with programmable
routing logic to offer service-specific customisation shows
excellent potential in optimising the quality of experience by
offering Routing-as-a-Service (RaaS).

In this paper, we address the aforementioned reliability,
scalability and flexibility challenges of such cases of Self-
Organized Networks (SON). We present an intent-based, data
plane-agnostic and intelligent Routing-as-a-Service platform
that:

• Allows the deployment of customized routing logic and
enables the life-cycle management and use of ML models



for optimizing network reliability.
• Provides a centralized service-based architecture oversee-

ing the entire network, diminishing the time-consuming
control plane packet exchange, hence reducing control
plane-induced latency.

• Captures the declarative requirements of the platform user
and the end-to-end network topology abstracted by the
underlying SDN/KDN and legacy controller-less infras-
tructure.

• Uses robust telemetry to capture the state of the end-to-end
network.

• Adopts state-of-the-art standards and open-source solu-
tions, validating our solution’s sustainability and exten-
sibility.

The remainder of this paper is the following, section II gives
a background of the context, section III describes the high-
level architecture of iRaaS, section IV provides details of the
iRaaS system design with sequence diagram and a bespoke
telemetry architecture named ShellMon, section V validates
the iRaaS architecture with a proof of concept testbed setup
related results, Finally, Section VI concludes this article with a
summary and future scope aimed for this work.

II. BACKGROUND

This section will explore the bottlenecks of distributed com-
puting models utilised in traditional routing protocols, particu-
larly regarding rapid convergence and scalability. Subsequently,
with a few contemporary examples, it delves into how the SDN
paradigm offers a framework to implement centralised routing
as a possible solution. Finally, it highlights the advantages of
application layer routing as a basis for RaaS.

A. Limitation of traditional IP Routing Protocols

Dynamic networks, such as Mobile Ad-hoc Networks
(MANET), categorize routing protocols into three main types:
proactive, reactive, and hybrid. These protocols update the
routing table regularly or when the network topology changes.
Traditional IP routing protocols have limited flexibility in cus-
tomizing the metric formulation; for instance, they do not con-
sider radio link characteristics like SNIR and path-loss in route
calculation. To optimize IP routing over diverse radio networks
and provide users with real-time access to critical information
on the move, Cisco introduced the Radio Aware Routing (RAR)
[1]. The latest RAR protocol, Dynamic Link Exchange Protocol
(DLEP), has been standardized in IETF (RFC 8175). Cisco
has also worked towards routing optimization in MANET [2].
Furthermore, OSPFv3 enhances routing efficiency and reduces
overhead traffic in MANET environments so that network
clusters can scale to support more users.

The Enhanced Interior Gateway Routing Protocol (EIGRP)
uses a hybrid approach with the Diffusion Update Algorithm
(DUAL) to combine distance vector and link-state routing
mechanisms. This approach helps to achieve rapid convergence
by pre-calculating a subset of neighbours called Feasible Suc-
cessors (FS) as the next hop for each destination prefix. EIGRP
also offers a more comprehensive composite metric function

that considers effective throughput, latency, load, reliability, and
jitter, which is superior to OSPF, which only considers band-
width. However, EIGRP may only provide rapid convergence
if neighbours qualify as an FS or if the FS becomes available.
In such cases, EIGRP suspends its data plane until it finds a
loop-free alternate path by recursively querying its neighbours.
The dynamic metric attributes load and reliability are also not
used in practice as they may cause route-flapping.

As computer networks grow larger and more complex, tradi-
tional hardware-based routing may result in slower convergence
and decreased network performance. This is because routing
protocols rely on distributed algorithms that require commu-
nication systems to exchange control information, which can
increase overhead and become a bottleneck for maintaining
efficiency at scale.

B. The SDN Paradigm for Centralised Routing

The Software-Defined Networking (SDN) paradigm ad-
dresses the limitation mentioned above by decoupling the con-
trol (CP) and Data Plane [3]. In SDN architecture, a logically
centralised CP oversees a distributed DP, which provides a
platform for centralised routing models to operate, diminishing
the overhead of control packet exchange at the DP. Moreover,
the central placement of the SDN controller simplifies the CP
topology from mest to tree. Consequently, The SDN controller
exhibits the potential to leverage the link-state routing approach
to guarantee loop-free paths in a space-efficient centralised
computing model with no control overhead at the DP.

In an SDN, forwarding devices like routers and switches
at the DP report their local neighbourship information to
the controller using the south-bound interface (SBI) without
hopping through any neighbours. This minimises the commu-
nication complexity of the control plane invariant to the network
diameter. The controller builds a graph locally representing the
underlying network topology using link-state logic from the
reported neighbourship information. Therefore, path calculation
algorithms can compute the routes without any control packet
exchange, resulting in faster convergence. Thus, forwarding
devices can request the controller for path discovery, and with
pre-computed paths, the controller can respond by meeting a
hard deadline. Therefore, a stable SBI (i.e., with negligible
jitter) and a proactive controller (i.e., with pre-computed routes)
can provide rapid convergence with a hard deadline, an essential
requirement for URLLC.

From the perspective of Internet routing, benefits of Routing-
as-a-Service have been presented in [4] explaining how it
can resolve the conflict of path selection for satisfying the
QoS requirements of end-to-end network users while allowing
Autonomous System administrators (e.g. ISPs) to control traffic
flows over their entire infrastructure.

Incorporating SDN, a RaaS platform in [5] allows the plat-
form user to select routing algorithms used as network functions
to compose a customised routing service. Nevertheless, this
solution relies on existing routing protocols.

A Software-defined Wide Area Network (SD-WAN) plat-
form, presented in [6], calculates optimal paths using CPLEX



over Open Network Operating System (ONOS)-controlled
routers with possible extension to ML-based optimal path cal-
culation. Nevertheless, it does not provide a way to customise
the metric function for calculating the optimal path and lacks a
telemetry architecture that any potential ML model will require.

C. Application Layer Routing

Application layer routing is particularly beneficial for hetero-
geneous SDNs, where the network infrastructure is diverse and
programmatically controlled. In such environments, application
layer routing leverages the centralized intelligence of SDN
controllers to make dynamic, application-aware decisions. This
approach enables the network to adapt in real-time to chang-
ing application demands and network conditions, optimizing
for factors like bandwidth, latency, and security requirements
specific to each application. For heterogeneous SDNs, which
may span across different domains and incorporate a variety of
physical and virtual network functions, application layer routing
ensures that traffic is efficiently and intelligently routed, taking
advantage of the programmable nature of SDNs to enhance
performance, scalability, and resilience. By aligning network
behaviour with application requirements, it facilitates a more
responsive and optimized network environment tailor-made for
the diverse needs of modern digital applications.

III. HIGH-LEVEL SYSTEM ARCHITECTURE

Based on the analysis in the previous section, we envision
a system that extends the standard SDN implementation and
provides routing in an ”as-a-service” fashion. This implies that
the routing service will be provided as an application remotely
accessible by end-users and administrators and deployed in a
softwarized fashion. Starting by the definition of the domain,
we imply a system which is a ”component subsystem” of a
more comprehensive system where the exposure of internal
design and operations of the system external to the domain
are limited. This could, for example, be an administrative
domain (e.g., an Internet Service Provider (ISP)). We later
envision that there will be a management plane responsible
for the intelligent intent-based routing across the different
domains. This architecture can be seen in Figure 1. This
figure also introduced our key functional blocks that provided
the envisioned capability described in this paper. As per our
envisaged functionality, we propose implementing a central-
ized application-layer routing model that accompanies and
extends traditional SDN and non-SDN controllers, enhancing
the system’s performance, scalability, and resilience. Our en-
visaged iRaaS application sits within a Cross-Domain Network
Manager (CDNM) responsible for orchestrating the different
services deployed there. The Cross-Domain Route Management
(CDRM) takes the routing decisions and communicates them
downstream to the administrative domain controlled by an Intra-
Domain Network Manager (IDNM). The domain comprises a
hybrid SDN network spanning multiple controllers (i.e., SDN
and Non-SDN). We refer to the combined control plane of
SDN and Non-SDN controllers within an administrative domain
as Shim-Layer, as it abstracts the platform specificity of the

underlying data plane from the planes above. We break down
our application layer into two entities, i.e., the iRaaS Client and
the iRaaS Server, to enhance load balancing and enable higher
scalability. Moreover, we propose a telemetry application that
collects real-time KPIs from the different domains and sends
them to the RaaS server to enable intelligent decisions. The
following sections describe the system in detail.

A. iRaaS Client

iRaaS client receives Route Intent from external admins
through an API proxy, which enables an administrator (human
or program) to interact through a single point of contact and
select common routing attributes, e.g., routing protocol and
its associated parameters and path manipulation logic. RaaS
offers an admin to customize routing logic. A custom routing
logic can be known as the Shortest Path Algorithm (e.g., SPF,
DBF and DUAL) or a bespoke one encoded in compliance
with the iRaaS Server API. Additionally, it offers the ability
to customize the cost function (e.g., an admin might use
SPF as routing logic for implementing LSR in a hierarchical
topology with EIGRP-like composite metric). This level of
flexibility of iRaaS contributes to its novelty and uniqueness.
The iRaaS client is also responsible for building an aggregated
graph of the underlying topologies of SDN and non-SDN
available controllers. The iRaaS Client sends the Route Intent
and aggregated graph to the iRaaS Server.

The iRaaS architecture supports hybrid SDN at the access
plane. The admin informs the iRaaS client about the respective
controllers’ management interface address while requesting
through the API Proxy. The client establishes management
access with all controllers at the access network leveraging
the CaaS service and respective drivers (SDN/Non-SDN) and
fetches the controller-wise downstream topologies through stan-
dard management protocol, e.g., NETCONF [7], and REST-
CONF [8]). Finally, the northbound interfaces between the
iRaaS Client and the Shim layer may use an exterior gateway
transport for connectivity.

B. iRaaS Server

The iRaaS server receives the Route Intents (i.e., shortest
path algorithm and cost function) and a graph representing the
underlying topology from the iRaaS client through a standard-
ised interface. The server then weighs the graphs using the link
cost reported from the telemetry system using the cost function
defined at the intent. The iRaaS Server then calculates the
optimal path(s) following the routing logic. Predictive analytics,
such as reliability estimation, uses an MLOps pipeline, which
contributes to cost calculation. The iRaaS server then responds
to the iRaaS Client with a set of paths, which the client
informs the downstream controllers to install at the forwarding
devices. The MLOps pipeline automates the standard machine
learning workflow of data preprocessing, training, testing and
validation. The paper [9] shows a Sharpe Ratio-based path-
reliability estimation using a Recurrent Neural Network (RNN)
with Long Short-Term Term Memory (LSTM).



Fig. 1. The proposed iRaaS System Architecture. The system consists of multiple domains and a cross-domain management plane that is responsible for the
orchestration and routing across each domain.

C. Telemetry Framework

The telemetry framework resides in conjunction with the
administrative domains and the IDNM and provides a platform
and vendor-agnostic multi-modal implementation that collects
data in a standardized fashion. The telemetry framework ex-
poses a number of RESTful interfaces and publish-subscribe
messaging buses responsible for collecting telemetry data and
storing them in the database available in the CDRM. In the
following section, we go into more detail on the implementation
of the telemetry framework describing the different communi-
cation modes supported.

D. Interfacing with 5G Systems

Although this paper does not demonstrate interfacing with
a 5G system. That said, the iRaaS framework can influence
packet routing at the 5G user plane. In such scenarios, the
iRaaS client would communicate with the Network Exposure
Function (NEF) to perform Policy-Based Routing (PBR) by
modifying routing tables held at the User-Plane Function (UPF).
To achieve rapid convergence, NEF can order the redundant
paths received from the iRaaS server by their cost and install
them in the UPF routing table as floating static routes.

IV. SYSTEM DESIGN AND PROVIDED FUNCTIONALITY

Following the above high-level architecture, in this section,
we describe in more detail how iRaaS is provided by our system
and describe all function blocks that build up our platform. As
briefly discussed earlier, our proposition supports both tradi-
tional SDN implementations and monolithic implementations
that communicate without available agents. Our system, as
described, is intended to provide a platform-agnostic, flexible,
and programmable path-calculation mechanism that, operating
at the application layer, enables the scalability and future-
proofing of modern routing solutions as well as the integration

with future network architectures such as SONs in the Sixth-
Generation (6G) networks.

A. Routing-as-a-Service

RaaS is a data plane-agnostic principle of flexible and
programmable path calculation mechanism served at the appli-
cation layer [5, 4]. In our system, we define the Routing Logic
as a pair of metric functions fmetric and shortest-path algorithm
fsp. Where, fmetric(wiai|i ∈ [1, n], i ∈ N) is an arbitrary
multivariate scalar function with a finite dependent variable set
A = {ai}, called attributes, weighed by corresponding weigh-
ing factor wi ∈ W . fsp takes a weighted simple graph (i.e.,
free of self-loops and parallel-edges) G(V,E), where V and E
are the vertices (nodes) and edge sets of G respectively, with a
pair of nodes vs, vd ∈ V and returns optimal path(s) Ps,d ∈ 2E

such that path cost is minimal. Therefore, considering an Intent-
Based Networking (IBN) paradigm, a RaaS application must
accept the routing logic (fmetric(A,W ), fsp(G(V,E))) as an
intent though an open-API, and returns the optimal path(s)
{Ps,d} as the response.

Figure 2 depicts the sequence diagram of a RaaS application
operating in Client-Server mode on a Hybrid-SDN topology.
As described in Section III, splitting the application into client
and server side results in load balancing and higher scalability.
Where the client-side operations are I/O-intensive due to intent-
API exposure and network controllers interfacing, the server-
side is more compute-intensive as it runs the graph algorithms.
The operation pipeline comprises the following phases:

1) Metric Building: In this phase, the attribute set A such
that |A| = N is provided with their corresponding
weights W along with a metric function fmetric. The
weighing factor wi ∈ W of an attribute ai ∈ A signifies
the priority of the attribute in the fmetric definition.
therefore, the sum of all wi must be 1.



Fig. 2. Sequence diagram of RaaS Client-Server model for a Hybrid-SDN topology

2) Topology Building: In this phase, the iRaaS client inter-
faces with the network controllers to fetch their underly-
ing topology. A network controller abstracts the platform-
level information of the network and returns a graph
representation of the topology. In a hybrid-SDN scenario,
the RaaS client interfaces with each instance of the SDN
and Non-SDN controllers to fetch their underplaying
topologies into a set of graphs G = {Gj(Vj , Ej)}.
In such case, we propose a normalisation method of
transforming G into a fused-graph G(V,E) by adding
a pseudo-node vp which is fully adjacent with a des-
ignated node vdn ∈ Vj from each graph Gj . An ideal
designated node is preferably but not necessarily to be
at the centre of its topology. This mimics the behaviour
of a summary point in traditional routing protocols. The
cost of the logical link between each vdn and vp is an
explicitly defined non-zero value. This is because the
routing between topologies across controllers under the
same administrative domain requires the inter-controller
data path to be involved, which is considered as an

exterior link. vp represents the exterior link, and the cost
between vp and vdn represents the cost of accessing it.

3) Policy Building: The iRaaS Client in this phase prepares
the routing logic by packing the normalised topology
G(V,E) and the metric function and sending it to the
iRaaS Server for processing.

4) Integrity Check: The iRaaS server checks the integrity
of the routing logic received from the iRaaS client and
passes it to the routing engine upon successful validation.

5) Path Calculation: The iRaaS servers calculates link-
costs by applying the fmetric function on telemetry data
and returns the optimal path(s) as per the shortest path
algorithm.

B. Intelligent Routing Behaviours
The iRaaS Client and Server components provide the under-

lying framework for making intelligent routing decisions. In this
section, we describe the set of behaviours that are essential for
an intelligent routing model. In either case of using a heuristic
algorithm or an ML model, these behaviours are critical for
providing an optimal routing path across different domains.



Moreover, for the graphs aggregated in our application plane,
two algorithms are described that can minimise the footprint of
our application and provide a more robust implementation.

1) Topology Aggregation: The aforementioned develop-
ments rely on typologies either reactively or proactively and
maintain a local database for it. An iRaaS application must
leverage the network controllers’ north-bound interface to fetch
and aggregate individual topologies into a global topology
map. The aggregation process could be arbitrary, however, the
graph aggregation algorithm must consider the inter-controller
connectivity cost while taking the union of the candidate graphs.
In the previous subsection, we took a simplistic approach by
introducing a logical pivot-vertex vp per aggregation and a
designated vertex vdn per candidate graph with a non-zero
constant cost between them representing the inter-controller
communication cost.

2) Cost Normalization: The aggregated graph generated
from the Topology Aggregation phase is an in-memory data
structure at the iRaaS application server. The telemetry system
monitors and maintains a database of network key perfor-
mance indicators (KPIs); the metric function uses a subset
of selected attributes from the KPIs to weight the aggregated
graph. Traditional routing protocols only consider link costs
for path-finding. However, in a softwarised network infras-
tructure where network functions are not necessarily physical,
computational costs are also significant in calculating end-to-
end costs. Therefore, a composite metric that considers both
link and computational cost into a normalised cost is required,
resulting in a more accurate routing decision. That said, normal-
ising computational cost with link cost requires an isomorphic
transformation of the aggregated graph. Since the computation
load appears as a weighted self-loop, hence, it makes the graph
a regular graph rather than a simple one. A simple graph is
a prerequisite for running any shortest-path algorithm on it.
Authors in [10] present such a normalization technique named
Stochastic Temporal Edge Normalisation (STEN).

3) Redundant Path Discovery: To ensure rapid convergence,
the path-finding algorithm fsp must not only discover the
best path but a set of alternate or redundant paths. This may
resemble the Feasible Successor approach of DUAL which
allows rapid path switchover in case of a primary path fail-
ure without involving any diffusion updates in the topology.
However, DUAL’s loop-prevention mechanism may not find
any Feasible Successor despite having available alternate paths
if none of the non-successor neighbours pass the Feasibility
Criteria. In such a case, EIGRP puts DUAL into an active state
and initiates querying neighbours for alternate path discovery.
This issue occurs because EIGRP is a distance vector routing
protocol. In RaaS, the global topology-building process follows
the link-state approach. Therefore with a global view of the
topology, an explicit loop-prevention mechanism is unnecessary
and hence, fsp can safely discover and maintain alternate paths
to reactively switch between them when the primary one fails.

4) Reliability-Based Metric and Reactive Route Ranking: As
the KPIs fluctuate over time with the network dynamics, it may
invoke fsp unnecessarily many times, resulting in inefficient

TABLE I
OPERATIONAL SPECIFICATION OF ShellMon

Attributes Type Usage

Mode of Transport
Mode 1: Request-Response
(RESTful) Pull based telemetry collection

Mode 2: Publish-Subscribe
(AMQP) Push based telemetry collection

Mode of Collection Mode 1: Agent Based Target device with monolithic karnel
Mode 2: Agent Less Target device allows agent installation

Serialisation Format JSON Standard data format, low parsing footprint

runtime behaviour such as route-flapping and high computa-
tional complexity. We propose two approaches to optimise the
runtime footprint for RaaS applications.

The first one is Reactive Route Ranking where fsp processes
the aggregated graph in two phases. In Phase-1, it calculates
all possible paths between all pairs of vertices. Defining a cut-
off diameter and initializing the link costs with seed values
speed up the process further. As the path discovery between
each pair is sequentially independent, therefore they can run
simultaneously. The result is a forest of Shortest Path Trees
(SPT) where each instance is rooted by the destination vertex
vd with all branches representing a unique path to the source
vs as the identical leaf for all branches. In Phase-2, a Raas
application may calculate the path cost of each branch for all
SPTs and rank the paths of each SPT. The two-phase approach
limits re-convergence to only topology change scenarios. If the
topology grows then only new connections are updated in the
SPTs, and if it shrinks, then vanishing links are updated with
an infinite cost.

Second, we propose the use of Reliability as a metric.
Reliability is statistically calculated using Sharpe Ratio [11]
from a rolling window of fmetric. RaaS application uses the
expected Reliability from a Recurrent Neural Network (RNN)
to make routing decisions. Therefore, iRaaS avoids fluctuating
unreliable routes and emphasizes more on reliable paths rather
than the shortest, least-costly and fastest paths.

In summary, the above two optimization steps ensure mini-
mum invocation of re-convergence with Reactive Route Rank-
ing and prioritize reliable routes. Authors in [9] have explained
the above techniques in detail.

C. Telemetry Framework and its Communication Modes

This section describes the telemetry framework architecture,
which carries the monitoring data from the data to the applica-
tion plane. The architecture of this system can be seen in Figure
3. We propose a modular, multi-modal telemetry API named
ShellMon for the RaaS framework. Unlike vendor, platform
and version-dependent telemetry protocols such as SNMP [12],
NetFlow [13], ShellMon provides platform and vendor agnostic
multi-modal telemetry with a common standard data format.
Table I summarises the operational specifications of ShellMon.

ShellMon server maintains a host file containing the clients’
information (e.g., hostname, port number, access credentials,
the content type of the payload and connection mode). The
Fetcher and subscriber modules use request-response and
publish-subscribe modes, respectively. The telemetry is col-
lected and stored in a Master database shared with the iRaaS



Fig. 3. System Level Diagram of the Telemetry System

application. The remainder of this section describes the various
modes of communication that ShellMon offers.

1) Transport Mode 1: RESTfull Request-Response: In this
mode, the collection mechanism operates in a RESTful fashion.
ShellMon server sends poll requests in regular intervals, which
triggers the clients to invoke device-level local KPI collection.
Clients timestamp the KPI samples and send them back to
the server. That said, this mode relies on HTTP’s keep-alive
mechanism to monitor the liveliness of the clients.

2) Transport Mode 2: Publish-Subscribe : This mode is
suitable for large-scale client-base, where the number of ports
available on the server side is constrained. The agent comprises
identical modules as of the RESTful mode. However, instead
of an API end-point, it publishes KPIs from a local pub-
lisher. ShellMon uses an Advanced Message Queuing Protocol
(AMQP) [14] message broker for the transport.

3) Collection Mode 1: Agent-Less Telemetry: This mode is
suitable for network devices running monolithic kernels such
as Cisco IOS and Juniper JunOS, which do not allow the
installation of external agents. The NetMon middleware com-
municates with the network devices through asynchronous SSH
sessions to collect telemetry information using a multi-vendor
SSH library called Napalm [ref-netmiko]. The Accumulator
module of the NetMon agent collects monitoring data samples
from Napalm into a key-value store named node util. The
Collector module tags it with source id and timestamp. Finally,

the Sender module exposes an API endpoint for polling the
monitoring data. NetMon uses a request-response mechanism
for polling, i.e., a poll request from the ShellMon server initiates
the collection cycle; therefore, the agent does not require any
local queue.

4) Collection Mode 2: Agent-Based Telemetry: An agent
runs on top of the network device kernel in this mode. The
Accumulator, Collector and Sender module behaves the same
as the Agent-Less mode.

V. TEST-BED SETUP AND PROOF-OF-CONCEPT

Figure 4 depicts the deployment diagram of the RaaS testbed
along with the technology stack used. The application, control
and data planes are segregated by three Virtual Machines (VMs)
for runtime isolating. The data plane comprises a Mininet [15]
and a GNS3 for simulating network topologies. Mininet sup-
ports Open-V-Switches (OVS) natively, we used a containerized
version of OVS to deploy in GNS3. We use OpenDaylight
(ODL) at the control plane to interface with OVS and the RaaS
application using OpenFlow v1.3 and RESTCONF respectively.
To carry out control plane operations, we use the following
Opendaylight features; odl-l2swicth module controls the south-
bound interface using OpenFlow, odl-restconf controls the
north-bound interface using RESTCONF, odl-mdsal provides
Model-Driven Service Abstraction Layer to parse YANG data-



Fig. 4. iRaaS Deployment Diagram

models, odl-ofplugin provides a standard interface between the
control and data plane, and odl-dlux provides ODL GUI.

The application plane hosts the iRaaS application and a
Cisco OpenFlow Manager (OFM) VM. OFM inspects the
topology from the ODL controller and provides a GUI-based
flow management tool. The Client module of the iRaaS app re-
ceives intent from the administrator that includes the controller
access information and routing logic. The Client interfaces with
the Adapter module to fetch topology from the data plane
following the methods specified in figure 2. Further, it sends a
route request to the Server Module which computes the optimal
paths and replies with a route response. In this setup, we have
developed the iRaaS app using Flask micro-framework for API
development and the NetworkX library for graph computation.

Figure 5 depicts the flow of topology processing from the
Mininet data plane to the RaaS application through the Open-
Daylight control plane. The shown example illustrates a partial
mesh topology of six Open-V-Switch instances each connecting
two hosts and communicating with a remote SDN controller
over OpenFlow v1.3. iRaaS adapter fetches the topology from
the OpenDaylight controller and the iRaaS client builds a graph
data structure using the NetworkX library as shown in the

Fig. 5. iRaaS calculates All-pair shortest path at the application plane

figure. In this test, we choose all-pair Dijkstra’s algorithm to
find all routes between each pair of OpenFlow switches as
shown at the top of the figure.

The above test results validate the proof of concept of the
proposed architecture. However, the same is also capable of
running customized routing algorithms by altering configuration
at the iRaaS server. That said, the paper [9] shows rapid
convergence in Knowledge-Defined Networks comparing the
scalability against SPF and DUAL.

VI. CONCLUSION AND FUTURE SCOPE

This paper presents a system-level architecture of Intelligent
Routing as a Service (iRaaS), a sequence diagram explaining
the data between various iRaaS components and a robust
telemetry architecture for collecting monitoring data from the
underlying network infrastructure. A proof of concept setup
also validates the operational capabilities of the proposed ar-
chitecture with a deployment diagram detailing the assembly
of various open-source components constituting the test bed
used for experiments.

We aim to advance the iRaaS concept with a robust cognitive
plane comprising additional machine learning-based operations
algorithms such as traffic classification and state prediction.
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