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Abstract: This study presents an empirical investigation into the energy consumption of Discrimi- 1

native and Generative AI models within real-world MLOps pipelines. For Discriminative models, 2

we examine various architectures and hyperparameters during training and inference and identify 3

energy-efficient practices. For Generative AI, Large Language Models (LLMs) are assessed, focusing 4

primarily on energy consumption across different model sizes and varying service requests. Our 5

study employs software-based power measurements, ensuring ease of replication across diverse 6

configurations, models, and datasets. We analyse multiple models and hardware setups to uncover 7

correlations among various metrics, identifying key contributors to energy consumption. The results 8

indicate that for Discriminative models, optimising architectures, hyperparameters, and hardware 9

can significantly reduce energy consumption without sacrificing performance. For LLMs, energy 10

efficiency depends on balancing model size, reasoning complexity, and request-handling capacity, as 11

larger models do not necessarily consume more energy when utilisation remains low. This analysis 12

provides practical guidelines for designing green and sustainable ML operations, emphasising energy 13

consumption and carbon footprint reductions while maintaining performance. This paper can serve 14

as a benchmark for accurately estimating total energy use across different types of AI models. 15

Keywords: Discriminative AI; Generative AI; Machine Learning; Power Profiling; Energy Consump- 16

tion; Sustainable AI; Green Machine Learning Operations 17

1. Introduction 18

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) have made 19

remarkable strides, transforming numerous sectors. However, their rapid growth has 20

raised concerns about their environmental impact, with projections indicating that AI/ML 21

pipelines will account for 2% of global carbon emissions by 2030 [1]. The computational 22

demands of training and deploying ML and Deep Learning (DL) models drive significant 23

energy consumption, contributing substantially to carbon emissions. This challenge high- 24

lights a pressing question: how can the ML field sustain its advancements while adhering 25

to global sustainability goals? 26

AI models can be broadly classified into “Discriminative” and “Generative”. Discrimi- 27

native AI algorithms, such as regression and classification, are used for applications that 28

require high-precision data categorisation and decision-making. Generative AI algorithms 29

focus on creating “something new”, such as images, text, music and more. Both categories 30

have become increasingly transformative across diverse domains, impacting not only ev- 31

eryday human activities but also specialised industrial applications. For instance, we see 32

Discriminative AI enhancing consumer applications such as shopping with spatial immer- 33

sion and its synergy with Mixed Reality (MR) [2], gaming, entertainment and education [3], 34
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and more. Discriminative models are also integral in industry verticals, such as automotive 35

or manufacturing, where they play a critical role in monitoring, automation, and anomaly 36

detection across production lines [4]. Such applications highlight ML’s growing presence 37

in key sectors and its ability to address diverse operational needs. 38

Generative AI is enabling the creation of high-quality media, text mimicking human- 39

like language and the simulation of complex environments. This branch of AI expands 40

the possibilities for innovation across sectors such as entertainment, healthcare, educa- 41

tion, and beyond [5]. Large Language Models (LLMs) exemplify this trend, showcasing 42

remarkable reasoning and understanding abilities that facilitate more interactive and con- 43

textually aware user experiences [6]. Discriminative and Generative models combined can 44

foster AI-native ecosystems such as the emergent intelligent future network [7], redefining 45

connectivity and the synergy of AI and data exchange. 46

However, all the above advancements come at the cost of increased computational 47

requirements: AI/ML models often necessitate large datasets and extensive processing 48

requirements, greatly increasing the energy demands [8]. This is clearly illustrated in 49

the domain of Generative AI, where datasets and computing resources are vastly larger 50

than conventional Discriminative AI use cases. To tackle the energy demands and man- 51

dated Sustainability Development Goals (SDGs) (UN Sustainable Development Goals: 52

https://sdgs.un.org/goals, accessed on), we see many recent advancements in Green and 53

Sustainable AI practices [8,9]. These practices encompass the efficient use of computa- 54

tional resources and holistic optimisation of ML pipelines. Developing methodologies for 55

energy-efficient ML workflows thus becomes essential for all stakeholders. 56

Our study builds upon these considerations. We initially discuss the transition from 57

Green Discriminative AI to Green Generative AI. Later, we provide an empirical analysis 58

of energy consumption patterns in both Discriminative and Generative AI applications. 59

For Discriminative AI, we examine both training and inference, analysing various model 60

architectures and hyperparameters to identify areas where energy consumption can be 61

minimised. For Generative AI, we focus on the energy consumption during inference using 62

different tokens and request requirements. Our findings offer key recommendations for 63

reducing energy consumption and propose methods to estimate expected energy use based 64

on various model parameters. Eventually, through analysing the energy costs associated 65

with such tasks, we aim to offer practical guidelines and best practices for researchers and 66

practitioners across the ML Operations (MLOps) lifecycle. While focused on specific tasks, 67

our findings provide generalisable insights for ML practitioners aiming for energy-aware 68

optimisations across diverse use cases. 69

The remainder of this paper is structured as follows: Sec. 2 presents the SDGs for 70

future systems and recent activities around sustainable Discriminative and Generative 71

AI and discusses their limitations. Green MLOps and the extensions for Generative AI 72

are described in Sec. 4, outlining the energy consumed within an MLOps pipeline. The 73

methodology used for our extensive investigation is illustrated in Sec. 5. Secs. 6 and 7 74

present our results and lessons learned for both large-scale experiments conducted. Finally, 75

the paper is concluded in Sec. 8. 76

2. Sustainability Goals 77

The United Nations (UN) has recently introduced its 2030 Agenda for Sustainable 78

Development, which outlines 17 SDGs. These SDGs must be taken into account when 79

designing future systems and use cases. Our work aligns closely with the following goals: 80

• Goal 9: Industry, Innovation and Infrastructure - Build resilient infrastructure, promote 81

inclusive and sustainable industrialisation and foster innovation - Our work aims to estab- 82

lish a roadmap for developing future MLOps frameworks, fostering innovation and 83

promoting best practices across the technology stack. 84

• Goal 10: Reduced Inequalities - Reduce inequality within and among countries - By reduc- 85

ing energy consumption, ML can become more economically viable and sustainable, 86

meeting the 4Cs requirements: Coverage, Capacity, Cost, and Consumption. 87

https://sdgs.un.org/goals
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• Goal 12: Responsible Consumption and Production - Ensure sustainable consumption 88

and production patterns - Green ML has the potential to significantly lower reliance on 89

fossil fuels and reduce overall energy consumption. 90

• Goal 13: Climate Action - Take urgent action to combat climate change and its impacts - 91

Optimising energy usage across the entire MLOps pipeline can lead to a substantial 92

reduction in carbon emissions. 93

The pursuit of higher accuracy and enriched understanding capabilities leads to larger 94

and more complex models. This trend spans both Discriminative and Generative AI. As 95

AI-native systems grow, their ML pipelines evolve into large-scale operational stages across 96

multiple domains – from initial data acquisition and pre-processing to model training, 97

deployment, and continuous monitoring. 98

Our work addresses the high energy demands associated with both branches of AI. 99

We offer practical approaches and recommendations for creating greener and more sus- 100

tainable MLOps pipelines, encompassing the entire computing continuum. By providing 101

actionable insights, we aim to promote energy-efficient practices across various use cases 102

and deployment scenarios, ultimately contributing to more sustainable AI-driven systems. 103

3. Related Work 104

Many studies present concepts and solutions around Green and Sustainable ML. 105

Some notable examples are [8–10], which focus primarily on Discriminative AI and present 106

statistics on the projected increase in ML’s energy consumption over time. Similarly, authors 107

in [11] comment on the economic and sustainability challenges around LLMs and authors 108

of [8] compare transformer models running in Google’s data centres. While these works 109

highlight the potential benefits of energy-saving practices (e.g., early exiting, knowledge 110

transfer, etc.), they lack a systematic evaluation of these methods. Our work addresses this 111

gap by conducting an empirical study on real-world hardware. 112

Traditional energy-saving strategies, such as pruning [12] or quantisation [13], have 113

been extensively explored for Discriminative AI in the past. Similar strategies are currently 114

adopted for Generative AI, too, with LLM pruning being proven to be energy-efficient [14]. 115

However, usually, such works focus on smaller-scale investigations, impacting the accuracy 116

of a given model. In contrast, contacting a large-scale investigation, we aim to explore ways 117

for energy reductions, examining trade-offs across various configurations and parameters 118

without compromising model accuracy. 119

Our Generative AI evaluation is primarily focused on the inference of LLMs. Training 120

these large generative models is widely known to be resource-intensive [15]; thus requiring 121

substantial energy consumption. Therefore, pre-trained large models are usually used in 122

most real-world generative AI applications. Models such as Meta Llama [16] can be either 123

used directly for inference or fine-tuned to meet specific inference needs. Therefore, our 124

investigation will prioritise the inference and how different model sizes can impact the 125

energy consumption of a use case. 126

The integration of sustainable practices within an ML pipeline is described in [17], 127

published by Meta’s AI team. While they tackle the problem systemically and holisti- 128

cally, the individual measurements or models are not detailed. In our work, we analyse 129

well-known models and datasets to enable readers to understand the impact of different 130

hyperparameters, models, and LLM service requests on energy consumption. 131

The recent literature includes various relevant studies that evaluate energy consump- 132

tion with real measurements. The authors of [18] focused primarily on shallow single-layer 133

models. Our work will target deeper neural networks to investigate how various hyperpa- 134

rameters affect their training and inference. A work from a few years ago [19] focused on 135

larger transformer-based models but presented only the cost of training and the environ- 136

mental impact of such models. The model characteristics or hyperparameters exploration 137

were again not considered. More recently, [20] presented an investigation of the Meta’s 138

Llama LLM energy consumption across different hardware configurations (GPU sharding, 139

distributed inference, and GPU power capping). This work presented some great insights 140
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Figure 1. ML model development and deployment phase and the associated MLOps and GenOps
life cycles.

into hardware domain optimisations. We will follow a similar approach but focus on 141

the trade-offs of the model parameters and the types of requests. Finally, [21] presents a 142

large-scale evaluation of various LLM models and datasets, focusing primarily on how 143

the datasets and the prompt lengths affect energy consumption. Our work aims to extend 144

their findings by investigating the model characteristics that could be optimised for an 145

energy-efficient ML deployment. 146

4. From Green MLOps to Green GenOps 147

DevOps combines software development and IT operations to shorten the software 148

development cycle and align closely with business goals. It uses integrated tools and 149

automation to streamline software development and delivery. Machine Learning Opera- 150

tions (MLOps) extends DevOps to ML, focusing on the efficient lifecycle management of 151

ML models. It addresses challenges like data management, versioning, and reproducibil- 152

ity while integrating tools for a seamless ML workflow [22]. Most production systems 153

supporting ML-driven applications incorporate an MLOps framework [23]. 154

LLM Operations (LLMOps), an extension of MLOps, was introduced soon after appli- 155

cations utilising LLMs, such as chatbots, became increasingly popular. This area specifically 156

caters to the nuances of managing LLMs across large-scale systems. However, Generative 157

AI is much bigger than LLMs, incorporating multi-modality across media, data types and 158

systems. Generative Operations (GenOps) or GenAIOps (as it was introduced in [22]) 159

addresses the differences associated with the preparation and handling of vast amounts of 160

unstructured data and the entire spectrum of model management, from pre-training and 161

fine-tuning stages to the intricacies of prompt engineering and the operation of multiple 162

models at scale. In essence, GenOps provides the tools, processes, and practices for orches- 163

trating and automating all stages and functions of the Generative AI model ecosystem, 164

ensuring modularity, scalability, generalisation and compatibility [22]. 165

The advent of GenOps introduces significant power demands that pose a critical 166

challenge to sustainable and eco-friendly operations. Green MLOps communities have 167

built energy-efficient and cost-effective frameworks for optimising ML and reducing carbon 168

emissions [9]. However, for GenOps, investigations on energy efficiency are still in their 169

infancy. Building on this foundation, we propose Green GenOps and describe tools and 170

practices that can be used for greener Generative AI operations. The following chapters 171

describe how Green GenOps extends the standard MLOps frameworks and how the energy 172

can be monitored in real time. We also provide insights on energy optimisations during the 173

training and deployment of Discriminative and Generative AI models. Our approach aims 174

to significantly reduce energy consumption while preserving the model’s performance and 175

accuracy. 176
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4.1. The Transition from MLOps to GenOps 177

MLOps (Fig. 1-top) typically involves four phases: 1) the Data Processing phase: for 178

collecting, curating, and labelling data, and assigning weights to features, 2) the Experi- 179

mentation phase: where algorithms, model architectures, and training methods are tested, 180

3) the Training/Evaluation phase: involves training the selected models on larger, feature- 181

rich datasets, refining the hyperparameters as needed, and finally, 4) the Inference phase: 182

trained models are deployed and take decisions in real-time. All deployed models are 183

usually continuously monitored (part of the Inference phase), measuring their performance 184

and identifying whether a model re-training or model retirement should be triggered. All 185

deployed models are usually packaged as an application (e.g., a microservice) with various 186

exposed interfaces. They are served either running on the service provider’s infrastructure, 187

exposed behind a Gateway or shipped to the client to operate in a distributed fashion. 188

Moving from MLOps to GenOps (Fig. 1-bottom), organisations must address, among 189

other challenges, the scale of models (usually requiring specialised infrastructure), the 190

high demands for training and inference, and the unpredictability of the models, i.e., non- 191

deterministic outputs complicate testing and validation. To that extent, as discussed in 192

Sec. 3, foundational Pre-trained Models are usually used to avoid the initial cost required 193

for training (e.g., Meta Llama). A Prompt is a specific input that guides a Generative 194

model to generate a desired output. In GenOps Prompt Design and Management phase 195

is introduced where prompts are created, tested and refined. The finalised and optimised 196

prompts are stored during Data Processing phase and can usually be shared among 197

multiple projects. While foundational models are good at generalising, it is a common 198

practice to have a Model Fine-tuning phase, where a model is specialised on specific 199

tasks or domains, using curated datasets and prompts. The supervised fine-tuning usually 200

involves a Reinforcement Learning from Human Feedback (RLHF) phase, where a human- 201

in-the-loop helps fine-tune the model’s behaviour over time. When a model is marked 202

as ready (adequately fine-tuned), it is deployed at the service provider’s infrastructure 203

and is exposed to the end-users via standardised interfaces. The exposed model is usually 204

accompanied by a Secure Gateway, where guardrails and filters are applied to both 205

prompts and model outputs to prevent harmful responses. Finally, as before, the Generative 206

model is continuously monitored to identify drift or harmful/malicious operations. 207

4.2. Energy Consumption in MLOps and GenOps and Sustainability 208

From the above, GenOps can be seen as the evolution of MLOps, taking into account 209

all the intricacies of Generative AI models and excluding unnecessary operations (e,g., 210

the training). Recent applications and deployments are seen to merge traditional MLOps 211

approaches with GenOps pipelines while using multiple Discriminative and Generative 212

AI models in synergy [24,25]. It is seen that various models can be combined for hybrid 213

(Discriminative and Generative) inferences or that Discriminative models are used for the 214

optimisation and monitoring of GenOps pipelines. This leads to increasingly complex 215

systems that need to manage, orchestrate, monitor, train and infer on multiple models 216

with different architectural specifications while handling a vast number of requests. The 217

complexity of such a system collectively increases the energy consumption and the envi- 218

ronmental impact even more. 219

For a traditional MLOps pipeline, training, experimenting, and inferring account for a 220

significant portion of the energy consumed [19]. Facebook’s AI research team [17] indicates 221

that inference requires more compute cycles than training, having a split of 10% : 20% : 70% 222

between Experimentation, Training/Evaluation and Inference, respectively. While we 223

could not find any investigations that report the energy consumption across the different 224

phases of GenOps, we believe a similar split is very likely. It will not be surprising if 225

the inference consumes an even more significant portion at the end. Considering the 226

energy distribution across the entire MLOps pipeline, again [17] reports that it is roughly 227

31% : 29% : 40% for the Data, Experimentation/Training/Evaluation, and Inference 228

phases. Overall, poor optimisation strategies, inadequate hyperparameter tuning and poor 229
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neural network management can vastly increase energy consumption. As described in [19], 230

this could increase the energy consumption by up to ×2000 times for Natural Language 231

Model (NLP) models and up to ×3000 for a transformer-based NLP. Data management and 232

pipeline optimisations are considered out-of-scope for this work, so we focus on phases 233

that require training or inference. 234

GenOps, extends traditional application architectures in various ways. For example, 235

while microservices form the fundamental operation unit in DevOps and MLOps, Gen- 236

erative AI introduces the concept of AI agents [26]. These agents are discrete, reusable, 237

and decoupled units designed to handle specific tasks. GenOps also incorporates non- 238

deterministic reasoning loops, breaking tasks into smaller, domain-specific, iterative steps 239

that reduce computational overhead. New model definitions manage multi-modal context 240

and systems under a single operational framework, one can streamline workflows and 241

resource allocation. Finally, efficient prompt design and refining, prompt caching, and 242

reusing optimised prompts are central to reducing computational overhead. These elements 243

are critical for Green GenOps and necessitate specialised operations for energy-efficient 244

management of GenOps workflows. 245

In the above-described systems, various works have proposed solutions on the energy- 246

efficient prompt design [21], energy-aware hardware and resource optimisation [20], prun- 247

ing techniques [14] that reduce the total energy consumption and more. However, none 248

of these works focused on how model characteristics and number of requests impact the 249

energy consumption of an MLOps or GenOps pipeline. This will be the gap addressed 250

by this paper. For Discriminative AI, we will investigate both training and inference and 251

how parameters such as the model size, the batch size, the time required for training 252

and inference, etc., affect the energy consumption. Similarly, for Generative AI, we focus 253

exclusively on the inference stage and examine how varying per-second request rates 254

impact the energy consumption of different sizes of LLMs. Overall, our findings and 255

recommendations will target ML practitioners who aim to build Green GenOps pipelines 256

at scale that combine the operation of both Discriminative and Generative models within 257

the same unified framework. 258

5. Methodology 259

In order to calculate the total energy consumption for an experiment, we need to mea- 260

sure the absolute power at frequent intervals. The time required for each experiment is also 261

essential. Hardware statistics like the utilisation of resources and the model characteristics 262

should also be captured as part of our experimentation and correlated with the model 263

characteristics and hyperparameters. More information about the framework implemented 264

for the Discriminative AI evaluation can be found at [27]. 265

5.1. Gathering Software-Based Energy Consumption Data 266

Monitoring energy consumption can be accomplished using hardware or software 267

tools. Hardware-based methods offer high precision [28], but they face challenges in 268

synchronisation and control [29], particularly for brief measurements, such as evaluating 269

a shallow neural network. These methods often require external clocks and expensive 270

equipment, making them less accessible to many ML practitioners. Our investigation 271

adopts a software-based approach to measure energy consumption. This approach not 272

only reduces costs and complexity but also ensures greater consistency and scalability. 273

Additionally, it enables parallel evaluations across multiple devices and allows us to 274

measure the power consumption consistently for both Discriminative and Generative 275

models. 276

Software-based energy measurement typically employs one of two approaches. The 277

first estimates power consumption using a hardware component’s Thermal Design Power 278

(TDP) and its utilisation, assuming a linear relationship between the two. TDP, measured 279

in Watts (W), represents the maximum power consumption under full theoretical load. 280

However, this method oversimplifies the relationship between power consumption and 281
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utilization [30], as modern hardware dynamically adjusts the frequency and can deactivate 282

entire cores to conserve energy. A more sophisticated approach derives power consumption 283

from the hardware’s capacitance (C), voltage (V), and frequency ( f ), using the formula 284

P = 1/2 CV2 f . While this method provides a more accurate representation, obtaining 285

precise values for these parameters across all hardware components is often impractical 286

As a workaround, manufacturers provide access to energy data through Model Specific 287

Registers (MSRs), such as Nvidia’s Management Library (NVML) for GPUs and Intel’s 288

Running Average Power Limit (RAPL) for CPUs and DRAM usage. These methods are 289

reliable with a reported variance of about ±5 W in absolute values while maintaining 290

consistent trends in relative measurements [31,32]. For consumer CPUs where MSRs do 291

not provide DRAM measurements, DRAM energy consumption is approximated using 292

the formula PDRAM = ∑ NDIMM × PDIMM, where NDIMM is the number of DIMMs and 293

PDIMM = 1/2 CV2 f . The operational V and f are accessible from the OS, and C is fixed for 294

all our experiments. This equation is a good approximation as voltage variations during 295

DRAM operations are almost negligible, and operational frequency does not change over 296

time [33]. 297

Our experimental methodology is as follows. We trigger the execution of the energy 298

measuring toolkit and the training/inference application for a given scenario at the same 299

time. At the end of the experiment, the training/inference application triggers the termina- 300

tion of the energy measuring toolkit, and the toolkit stores the results for post-processing. 301

This process is iterated across all scenarios multiple times, and our results are averaged out 302

across all runs. 303

5.2. Calculating Energy Usage in Machine Learning Processes 304

Our investigation focuses on either training or inference sessions. To measure the 305

energy consumption we define two metrics, i.e., Etr, which is the total energy consumed 306

during one training session (i.e., for a given model and dataset, with a pre-defined set of 307

hyperparameters and a fixed number of epochs), and Ein, which is the total energy during 308

inference (i.e., for a given model and dataset, inferring across all samples with a given 309

batch size). They are as follows: 310

Etr =
∫ Ttr

t=0
Ptr(t) dt −

∫ Tidle

t=0
Pidle(t) dt (1)

311

Ein =
∫ Tin

t=0
Pin(t) dt −

∫ Tidle

t=0
Pidle(t) dt (2)

where Ttr and Tin are the training and inference times, Tidle is a hardcoded time interval 312

used for the idle experiment, and Ptr, Pin and Pidle are the power measurements during 313

training, inference and when the system is idle. 314

While Discriminative AI models usually run on a single machine, it is not uncommon 315

for Generative AI models to be split across multiple GPU servers or multiple GPUs within 316

the same server. Moreover, many enterprise servers utilise multiple CPU sockets and 317

packages. Therefore, power consumption calculations should take that into consideration 318

and as seen later, for our calculations we consider the sum of the power consumption of all 319

hardware components involved. We capture the power consumption at frequent intervals 320

∆t. Denoting ti as the i-th time interval, the power P(ti) (this could be either for training or 321

inference) is: 322

P(ti) =
NCPU

∑
k=1

PCPUk
(ti) +

NGPU

∑
k=1

PGPUk
(ti) +

NDRAM

∑
k=1

PDRAMk(ti) (3)

where PCPU, PGPU and PDRAM are the power consumption, taken in real-time for the CPU 323

socket (CPU package), GPU socket and DRAM DIMM, respectively. The energy within i-th 324
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Table 1. Hardware Configurations (HCs). In brackets is the TDP for each hardware component.

HC-1 HC-2 HC-3 HC-4

CPU∗ i7-8700K (95 W) i9-11900KF (125 W) i5-12500 (65 W) Xeon 8480+ (350 W)

DRAM 4 × 16 GB DDR4 4 × 32 GB DDR4 2 × 16 GB DDR5 16 × 64 GB DDR5
3600 MHz 3200 MHz 3200 MHz 2200 MHz

GPU+ RTX 3080 (320 W) RTX 3090 (350 W) RTX A2000 (70 W) 2×H100 (2×300 W)
10 GB 24 GB 12 GB 2×80 GB

∗Intel Core, +Nvidia driver v530.30.02, CUDA v12.1

interval can be calculated as the E(ti) = P(ti)∆t. Based on that, the Eqs. (1) and (2) can be 325

approximated with the cumulative sum of all intervals, i.e.: 326

Etr =
Ntr

∑
i=0

Ptr(ti)∆t −
Nidle

∑
t=0

Pidle(ti)∆t (4)

327

Ein =
Nin

∑
t=0

Pin(ti)∆t −
Nidle

∑
t=0

Pidle(ti)∆t (5)

where Ntr, Nin and Nidle are the total number of intervals during training, inference, or 328

idle, respectively. As discussed, data exchange and processing, even though they play a 329

significant role in the energy consumed, will not be considered. 330

5.3. Hardware Stats and Model Characteristics 331

In Table 1, we list all the hardware configurations used for our experiments. As 332

all configurations use Intel CPU sockets and Nvidia GPUs, we utilised RAPL or NVML 333

libraries, respectively, for all measurements. Moreover, we collect various utilisation and 334

thermal values during execution. The NVML library provides the GPU (and its VRAM) 335

utilisation. For the CPU, the utilisation metrics were directly collected from the OS as a 336

function of each CPU core. The CPU utilisation is calculated as the average utilisation at 337

a given time between all cores. Similarly, DRAM’s utilisation was also captured directly 338

from the OS. 339

As described earlier, our evaluation aims to identify patterns and model characteristics 340

that can affect total energy consumption. To achieve some consistency across the gener- 341

ative and discriminative experiments, we identified various model metrics that could be 342

measured for both. These include the model size, the number of total and trainable parameters, 343

and multiply–accumulate operation (MAC). Moreover, for the discriminative AI use-case, we 344

also captured the buffer size and the floating-point operations per second (FLOPS) for the 345

Generative AI experiment. 346

The model size, measured in bytes (B), is calculated when the model is decompressed 347

and loaded in the VRAM. It includes both the parameters and buffers and represents the 348

overall footprint of the model in memory. Particularly for Generative AI models, measuring 349

their size instead is critical as it is the major limiting factor on LLM deployment. Depending 350

on the load, the computational power of the GPU may not be the bottleneck towards higher 351

throughput, but the model size may be. 352

The total number of parameters and the trainable parameters are key indicators of 353

a model’s complexity. Trainable parameters differ when certain layers in the model are 354

frozen (i.e., not updated during training). Generally, a larger number of parameters implies 355

a more complex model, which may achieve higher accuracy but at the cost of increased 356

computational resources and memory usage. This added complexity can lead to longer 357

training times and may necessitate more powerful hardware. 358

The buffer size represents additional data structures used for storing intermediate 359

outputs and constants that remain unchanged during training, such as batch normaliza- 360

tion parameters. While these do not directly contribute to the model’s learning capacity, 361
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Table 2. Model Parameters for Discriminative AI experiments

Hyperparameter Value

Batch Size 128
Learning Rate 0.001

Optimizer Stochastic Gradient Descent
Loss Function Categorical Cross-Entropy
Weight Decay 5 × 10−4

they significantly affect the overall memory footprint. A large buffer size can result in 362

inefficiencies, particularly in systems with limited memory. 363

FLOPs and MACs are metrics commonly used to calculate the computational complex- 364

ity of deep neural networks. FLOPs refer to the number of arithmetic operations—addition, 365

subtraction, multiplication, and division—performed on floating-point numbers. These 366

operations are central to many mathematical computations in ML, including matrix multi- 367

plications, activations, and gradient calculations. FLOPs are commonly used to quantify 368

the computational cost or complexity of a model or a specific operation within it. This 369

metric estimates the total arithmetic operations required, making it particularly useful for 370

assessing computational efficiency. By measuring FLOPs, researchers and practitioners can 371

better understand and compare the resource demands of different models or configurations. 372

Finally, MACs specifically count the number of operations where two numbers are 373

multiplied, and the result is added to an accumulator. This operation is fundamental 374

to numerous linear algebra tasks, including matrix multiplications, convolutions, and 375

dot products. MACs provide a more targeted measure of computational complexity, 376

particularly in models that heavily rely on linear algebra operations, such as Convolutional 377

Neural Networks (CNNs). By focusing on these critical operations, MACs offer a practical 378

metric for assessing the computational demands of such models. 379

For our investigation, these model characteristics – whether analysed independently 380

or in combination – are assessed to explore their impact on total energy consumption. These 381

parameters are calculated when the model is loaded onto the GPU before the execution of 382

each experiment. 383

6. Results 384

For our investigation, we performed two sets of experiments, one focusing on Dis- 385

criminative AI and another on Generative AI. The following sections describe our power 386

consumption measurements and our initial observations, and Sec. 7 delves into our findings 387

and how these could be applied in an ML deployment. Finally, each section describes the 388

evaluation metrics for the Discriminative and Generative AI experiments used in this study. 389

6.1. Discriminative AI models 390

We investigated Discriminative AI with a simple image classification task, an applica- 391

tion very common in hand gesture detection, interactive educational games, etc. [34,35]. 392

This application was chosen due to the abundance of models and datasets available in 393

the literature. The selected model architectures span various sizes and types. We chose: 394

SimpleDLA, DPN (26), DenseNet (121), EfficientNet (B0), GoogLeNet, LeNet, MobileNet, 395

MobileNetV2, PNASNet, PreActResNet (18), RegNet (X_200MF), ResNet (18), ResNeXt 396

(29_2x64d), SENet (18), ShuffleNetV2, and VGG (16), to analyse the behaviours of different 397

models. The number in the parenthesis specifies the model variant chosen for our exper- 398

iment. All experiments were conducted with the same hyperparameters (batch size of 399

128, learning rate 0.001, stochastic gradient descent optimiser, categorical cross-entropy 400

loss and weight decay 5 × 10−4). To maintain consistency across runs, we also fixed the 401

random seed. Our model parameters are also summarised in Tab. 2. Variations in the 402

hyperparameters used across the different experiments are described in each section. 403
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Figure 2. Training and inference duration (for 50k samples).

The experiments are based on the first three different Hardware Configurations (HCs) 404

summarised in Table 1. These three HCs provide varied environments to explore and 405

identify their differences or similarities and the correlations (Pearson r and Spearman ρ) of 406

the different model parameters. We used the CIFAR-10 dataset [36], which consists of 60000 407

32 × 32 RGB colour images across 10 classes equally split per class, e.g., aeroplane, bird, cat, 408

dog, etc. (6000 images per class). All images were normalised per channel using the CIFAR- 409

10 training set statistics (mean = (0.4914, 0.4822, 0.4465), std = (0.2023, 0.1994, 0.2010)), 410

ensuring each input has approximately zero mean and unit variance. CIFAR-10 was chosen 411

due to its popularity in benchmarking a wide range of image classification models, from 412

lightweight networks to deeper convolutional architectures. The split between the training 413

and testing set is 50000 : 10000. For evaluation, the testing set was replicated fivefold (i.e., 414

to 50k samples) to ensure consistency between training and inference samples. 415

6.1.1. Initial Statistics 416

The accuracy achieved by most models was between 87% − 91% after 100 epochs. 417

As expected, the shallower LeNet underperformed, reaching only around 68%, while 418

MobileNet and EfficientNet achieved 81% and 83%, respectively. The training and inference 419

durations (one epoch of training and inference on 50k samples) are shown in Fig. 2. For 420

most models, training takes approximately three times longer than inference due to the 421

computational overhead of backpropagation and parameter updates (r ≈ 0.9 across all 422

models and HCs). However, models like DPN and RegNet deviate from this trend. 423

Significant differences were observed across hardware configurations (HCs) for the 424

same models. For instance, PreActResNet at HC-2 (Fig. 2b) requires about 5x more time 425

to train or infer compared to LeNet, but at HC-3 (Fig. 2a), that difference increases to 426

26x. Interestingly, during training, the relative time differences between models remained 427

consistent, but during inference, smaller models on a more powerful GPU (HC-2) processed 428
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Figure 3. Average power usage with HC-2.

the same number of samples in nearly identical durations, regardless of model size. Given 429

that inference largely determines energy consumption (as discussed in Sec. 4.2), models 430

that achieve similar accuracy but infer faster offer significant long-term energy savings, 431

even if their training times are longer. For example, VGG and ResNet deliver comparable 432

accuracy to DenseNet or DPN but consume only a fraction of the energy, making them 433

more suitable for prolonged use. 434

6.1.2. Power Consumption Measurements - Discriminative AI 435

Fig. 3 illustrates the average power consumed for HC-2 for training and inference. For 436

larger models, the GPU operates close to its TDP, as shown in Fig. 3a. As expected, CPU 437

and DRAM, being underutilised, exhibit roughly equal and not significantly high average 438

power consumption across all models. However, this differs from the inference, as depicted 439

in Fig. 3b. Many models operate ≥ 30% below the GPU’s TDP (e.g., VGG), whereas CPU 440

and DRAM follow the same trends as with the training. The same applies across all HCs, 441

with the difference being more prominent for HC-1 and less prominent for HC-3. 442

Since CPU and DRAM usage remains relatively constant across different models, 443

we compare the power consumption with the GPU (VRAM and processing resources) 444

utilisation (Fig. 4). A larger GPU VRAM use generally corresponds to higher utilisation 445

and greater power consumption, a trend that is more noticeable during inference. Our 446

results indicate a strong correlation between utilisation and power consumption. Although, 447

this correlation holds up to a certain threshold (e.g., ρ ≈ 0.81 for HC-3, ρ ≈ 0.55 for HC-2). 448

Beyond a power draw of ˜300 W, further increases in the GPU utilisation did not result in 449

increases in the power consumption. This is clearer in Fig. 4a, where most models push 450

the GPU to operate close to its TDP. Our findings in this study align with our previous 451

work [37]. 452
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Figure 4. Utilisation and power consumption (considering the GPU RAM usage) - HC-1.

Our investigation reveals a strong linear relationship between time and energy con- 453

sumption, with r = 0.99 (e.g., per training epoch or fixed number of samples during 454

inference). While comparing the model loss, accuracy, and total energy accumulated as 455

the number of epochs increases (average across all models while training – Fig. 5), even 456

though there is no correlation between accuracy and total energy consumed, as the number 457

of epochs increases, the range of values observed for the energy, is greater (relatively) to 458

the accuracy, thus replacing a model can significantly benefit the energy consumption with 459

no significant cost in the accuracy. 460

MAC is usually a standard metric commonly used to assess the complexity of a model 461

and its expected energy consumption. When we compare the MACs of different models 462

in relation to their total energy usage, we find a strong correlation between them, with 463

ρ ≈ 0.8 across all HCs. However, our analysis indicates that combining MACs with the 464

model parameters (Fig. 6) provides a more representative metric. For both training (Fig. 6a) 465

and inference (Fig. 6b), we see a strong correlation across them (ρ ≈ 0.9 across all HCs). 466

Finally, when comparing different batch sizes for training and inference (Fig. 7), we 467

find that smaller batch sizes tend to increase power consumption (Fig. 7a). This increase 468

directly correlates with the GPU utilisation for each model (Fig. 7b). For every HC, an 469

optimal batch size exists that minimises power consumption; any further increase in the 470

batch size does not yield additional improvements. Importantly, as smaller batch sizes 471

achieve higher accuracy [38], this indicates a tradeoff between the accuracy and the energy 472

consumption that requires further exploration. 473

6.1.3. Total and GPU-only Energy Consumption and Correlation Metrics 474

As discussed earlier, inference is expected to be the most energy-consuming phase 475

of an ML pipeline due to the volume of samples being inferred in a real-world system. 476

We, therefore, present in Table 3 the correlation of various metrics with the total energy 477

consumption, focusing on the inference phase. Investigating the same values for the GPU 478
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Figure 5. Loss, energy and accuracy per epoch, averaged across all models - the shaded areas show
the range of values - HC-3.

Table 3. Spearman Correlations of the total energy consumptions and various metrics.

Metric HC-1 HC-2 HC-3

energy_per_sample 1.000000 1.000000 1.000000
macs_param 0.902342 0.915271 0.852587
model_size_to_ram 0.521170 0.212621 0.457989
overall_efficiency -0.439481 -0.340809 -0.592853
work_per_unit_power -0.311792 -0.388402 -0.691502
gpu_energy_scaling_factor 0.229738 0.196945 0.390812
energy_scaling_factor -0.039773 -0.106112 -0.109445
parameters 0.200979 0.212926 0.142314
work_done 0.021486 -0.052404 -0.387764

energy consumption in isolation, we identified no significant difference between them; 479

therefore, we do not include them in the paper. 480

We devised nine metrics to provide insights into the model’s performance, energy 481

consumption and resource utilisation. These were: 482

1. macs_param: Calculated as the ratio of MACs to trainable parameters – evaluates the 483

computational efficiency of the model architecture (also seen in Fig. 6) 484

2. work_done: Defined as the trainable parameters processed per second – assesses 485

computational throughput and resource utilisation 486

3. overall_efficiency: The ratio of the accuracy multiplied by the work_done over the 487

system’s utilisation 488

4. energy_per_sample: Represents the total average energy consumption for one sample 489

of inference 490

5. parameters: The total trainable parameters, a key indicator of model complexity and 491

context for other metrics 492

6. work_per_unit_power: Calculated as work_done divided by the observed power for 493

a given batch of samples, quantifying energy efficiency 494

7. energy_scaling_factor: The ratio of the total power (CPU, GPU and RAM) to model 495

parameters 496

8. gpu_energy_scaling_factor: Similar to energy_scaling_factor but focused on 497

just the GPU’s absolute power consumption, – both show how energy consumption 498

scales with model complexity 499

9. model_size_to_ram: Compares model size to memory usage, aiding in optimising 500

memory efficiency for resource-limited systems 501

We see that the temporal correlation between the energy consumption and a single 502

sample’s inference makes the energy_per_sample a highly reliable energy predictor re- 503

gardless of the hardware. Similarly, the strong correlation of macs_param across different 504

hardware configurations indicates that computational efficiency is a strong and consistent 505
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Figure 6. Total energy consumption as a function of the MACs per parameter - HC-3.

factor in energy consumption. From the work_done, it is indicated that just the “throughput” 506

of a pair ”ML model/hardware configuration” is not directly tied to the energy consump- 507

tion. However, the moderate negative correlations of the overall_efficiency for HC-1 508

and HC-2 (with the mid-tier hardware showing a better correlation) and the strong correla- 509

tion for HC-3 indicate that particularly for energy-efficient hardware configurations, there 510

is a higher correlation between the system’s efficiency and the energy consumption and 511

short-living experiments can be used for extrapolating the expected energy over longer 512

periods. 513

The negative values of work_per_unit_power indicate that higher efficiency is associ- 514

ated with lower energy consumption. However, the top-tier hardware (HC-2) does show 515

a higher correlation compared to the mid-tier one (HC-1) (something that is not the case 516

in the overall_efficiency), indicating that hardware architecture differences have to be 517

considered for long-term deployments. Also, the higher value in the low-tier hardware 518

(HC-3) indicates an energy-optimised hardware and an energy-performance tradeoff that 519

can be considered when orchestrating model deployments across heterogeneous hardware 520

configurations. 521

The moderate correlation of the model_size_to_ram with the energy consumption 522

shows that the model size compared to the total VRAM available plays a role but is 523

not a dominant factor. This is intuitive, as other factors (e.g., computation) likely over- 524

shadow memory usage in energy scaling. Finally, for the energy_scaling_factor, the 525

gpu_energy_scaling_factor, and the parameters, we observe a weak correlation. The 526

number of parameters is not a strong determinant of energy use, with model archi- 527

tectural factors such as the MACs playing a more significant role. Similarly, from the 528

energy_scaling_factor, the gpu_energy_scaling_factor, we see that the absolute power 529

consumption and, to that extent, the total energy consumed does not scale with the number 530

of parameters. 531
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(b) Batch size and GPU utilisation.
Figure 7. Effect of batch size on total energy consumption and GPU utilisation - HC-2.

Table 4. Model Parameters for Generative AI experiments

Hyperparameter Value

Temperature 0
Top-p 1
Top-k -1
Min-p 0

Detokenisation True

6.2. Generative AI models 532

To analyse the energy consumption of Generative AI models in the context of LLM 533

inference, we focus on tasks involving real-time, high-frequency interactions, such as those 534

encountered in chatbot platforms. We conducted our experiments on a high-performance 535

hardware configuration (HC-4 in Table 1) consisting of two Nvidia H100 GPUs, an Xeon 536

8480+ CPU, and substantial DRAM capacity. This setup allows us to efficiently manage the 537

computational demands of inference tasks at various request rates, simulating real-world 538

applications where LLMs respond to multiple concurrent users. 539

We picked different-sized models to provide reference points for different applications. 540

These models are part of the Meta Llama family of models, particularly the 1 and 3 billion 541

parameter models from the 3.2 generation and the 8 and 70 billion parameter models 542

from the 3.1 generation. These models’ weights are quantised for their inference to 8-bit 543

floating point numbers. Their activation functions remain non-quantised. These models 544

were deployed to a vLLM inference endpoint [39]; a state-of-the-art LLM inference engine 545

allowing multi-threaded Generative AI operation (i.e., multiple concurrent conversations 546

being answered simultaneously). The LLM hyperparameters fixed across all experiments 547

were the: temperature 0, top-p, 1, top-k −1, min-p 0 and detokenisation “true”. These 548

are also summarised in Table 4. We measured energy usage while varying the Requests 549

Per Second (RPS), a critical parameter directly impacting the model’s computational load 550
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Figure 8. Total energy consumption per request as a function of the number of RPS.
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Figure 9. Energy per output token as a function of RPS.

and energy requirements. Specifically, we employed the Chatbot Arena [40] dataset that 551

contains real human queries to chatbots (as per the examples found in Table 5) to replicate 552

high-traffic conditions, where user interactions necessitate continuous and rapid LLM 553

responses. By simulating different RPS levels, we aimed to capture the energy footprint 554

of Generative AI under various operational scenarios, providing insights into sustainable 555

deployment practices. 556

In the following sections, we present detailed power consumption measurements for 557

the LLMs under different RPS settings, identify the primary factors contributing to energy 558

usage, and discuss strategies for optimizing energy efficiency during Generative AI model 559

inference. 560

6.2.1. Power Consumption Measurements - Generative AI 561

Power consumption data was collected by measuring the energy per request across 562

different RPS settings to capture the responsiveness and efficiency of each model configura- 563

tion under variable loads. The results are displayed in Fig. 8, which shows the energy per 564

request across the models tested. The data provides insight into the relationship between 565

RPS and energy consumption, indicating that as RPS increases, the per-request energy cost 566

initially decreases due to more efficient utilisation of GPU resources. However, the energy 567

cost per request stabilizes or slightly increases beyond a certain threshold due to resource 568

saturation. The resource saturation of the concurrent processing threads available for each 569

model saturate at 40 RPS for the 1 and 3 billion parameter models, 35 RPS for the 8 billion 570

parameter model, and 10 RPS for the 70 billion parameter model. 571

Fig. 9 illustrates the energy consumption per output token across various RPS settings. 572

The graph shows that smaller models maintain lower energy costs per token at higher 573
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Figure 10. Per-device energy consumption per request at 10 RPS.

Table 5. Sample questions from the Chatbot Arena dataset

ID Question
1 What is the difference between OpenCL and CUDA?
2 Why did my parent not invite me to their wedding?
3 Fuji vs. Nikon, which is better?

RPS values, reflecting their suitability for high-throughput scenarios. Conversely, larger 574

models like the 70B configuration exhibit significantly higher energy consumption per 575

token, particularly at lower RPS values, due to the computational intensity required. 576

Fig. 10 presents the per-device energy consumption per request for the tested models 577

operating at 10 RPS. The results reveal that CPU and DRAM consumption remain rela- 578

tively consistent across the models, only slightly increasing as the model size scales. In 579

contrast, GPU consumption significantly rises with larger models, reflecting their increased 580

utilisation of GPU compute resources. Specifically, the GPU energy consumption for the 581

70B model is nearly three times that of the 1B model. For smaller models like 1B, 3B, and 582

8B, which do not fully utilise the available GPU compute resources, the observed energy 583

consumption increases incrementally. However, the transition to the 70B model results in 584

a dramatic surge in GPU energy consumption, underscoring the exponential growth in 585

computational demand as model size increases. This highlights the need for targeted GPU 586

workload optimisation to effectively manage energy efficiency for larger models. 587

6.2.2. Correlation Metrics for Generative AI 588

We focus on the inference phase for Generative AI, which is typically the most com- 589

putationally demanding part of a real-time user-interactive workload. Table 6 illustrates 590

the Spearman correlations between total energy consumption and several key metrics for 591

Large Language Model (LLM) inference experiments on Hardware Configuration 4 (HC-4). 592

Separate GPU-only correlations are omitted here, having been verified to align closely with 593

total energy usage (i.e., no additional insights are gleaned by isolating the GPU alone). 594

We define seven core metrics that characterise model complexity and operational efficiency 595

in LLM settings: 596

1. energy_per_sample: Represents the total average energy consumed for one LLM 597

inference request. Since this serves as our baseline measure of energy usage, its 598

correlation with total energy is, by definition, equal to 1.00. 599

2. flops: The total number of floating-point operations required for the model’s forward 600

pass. This metric reflects the global computational cost of generating an inference 601

output. 602

3. model_size_to_ram: Compares the on-GPU size of the model to the total VRAM 603

available, impacting caching efficiency and concurrency. 604
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Figure 11. Per-model output token distribution for Chatbot Arena Dataset.

Table 6. Spearman Correlations of the energy per sample consumption and various metrics for
Generative AI models.

Metric HC-4

energy_per_sample 1.00
flops 0.32
model_size_to_ram 0.32
parameters 0.32
request_rate -0.95
average_output_token_length -0.26
cache_hit_rate -0.32

4. parameters: The full parameter count for the LLM reflects the overall model scale. 605

Larger models tend to require more computing but can be more expressive. 606

5. request_rate: The number of inference RPS. Higher RPS often leads to improved 607

batching on GPUs, thus reducing per-request energy overhead up to resource limits. 608

6. cache_hit_rate: Fraction of queries that leverage cached tokens (e.g., from matching 609

prompt prefixes). Effective caching lowers redundant computation and helps reduce 610

energy usage. 611

7. average_output_token_length: Mean token length of the model’s generated re- 612

sponses. While it does increase inference steps, its effect on total energy is often 613

secondary to batching or model-scale factors. 614

From Table 6, we see that energy_per_sample naturally attains a perfect correlation as 615

it is the reference factor. Additionally, flops, model_size_to_ram, and parameters exhibit 616

identical moderate correlations (0.32), in part because of simplifications in the FLOPs/pa- 617

rameter estimation library used [41]. By contrast, request_rate shows a strong negative 618

correlation (−0.95), underlining the energy benefit of processing multiple requests concur- 619

rently via batching. A similarly negative correlation for cache_hit_rate (−0.32) indicates 620

that leveraging pre-computed tokens reduces redundant operations and, thus, overall en- 621

ergy. Lastly, average_output_token_length displays a weak negative correlation (−0.26), 622

suggesting response length is a less critical driver of total energy use when compared to 623

concurrency and caching dynamics. The negative correlation may seem counter-intuitive; 624

However, this is a consequence of the training biases of the different Llama model sizes, 625

which, with the chatbot arena dataset, the smaller models produced longer generations 626

than the larger models, as can be observed in Fig. 11 for Output Histogram. 627
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7. Discussion 628

Starting with our initial observations for Discriminative AI (Sec. 6.1.1), it is evident 629

that each model’s unique architecture limits the potential for cross-model generalisations. 630

For instance, while one model’s energy consumption may be low, there is no guarantee 631

that another model with similar characteristics will exhibit comparable energy efficiency. 632

Investigating specific architectural features and model layers could unveil patterns or 633

principles influencing energy consumption, paving the way for broader insights. However, 634

when orchestrating a model deployment, it was evident (Fig. 4) that a placement leading 635

to the hardware being close to its saturation point (but not exceeding that) can lead to the 636

best energy-performance result. This observation is shared across both Discriminative and 637

Generative AI experiments. 638

As illustrated in Fig. 5, energy reduction often outweighs accuracy gains in practical 639

scenarios. Interestingly, training and inference durations are not directly correlated, ren- 640

dering cross-phase or cross-hardware energy estimations unreliable. Although a heuristic 641

might suggest that training typically requires approximately three times the duration of 642

inference for the same number of samples, this does not hold universally. 643

Since time and total energy consumption scale linearly, short-lived profiling (e.g., train- 644

ing for one epoch or inferring for a small number of samples) can be a reliable predictor of 645

energy consumption for larger-scale scenarios. Moreover, models that achieve comparable 646

accuracy but demonstrate faster runtimes can yield substantial long-term energy savings. 647

Based on the energy split observed in Fig. 3 and taking into account Facebook’s energy split 648

presented in Sec. 4.2, prioritising models that are energy-efficient during inference is more 649

beneficial for real-world applications than focusing solely on training energy efficiency. 650

To refine energy consumption predictions, strategies that analyse initial learning 651

curves in conjunction with power profiles can provide accurate estimates of total energy 652

usage. Additionally, Fig. 4 demonstrates that hardware power profiles are not strictly linear. 653

Manufacturers often push device limits for marginal performance gains, which can lead 654

to inefficiencies. Techniques like power capping optimisation (e.g., [37]) can mitigate this 655

issue and significantly reduce energy consumption. 656

Considering various computational efficiency metrics (Sec. 6.1.3), our findings, con- 657

trary to the literature, suggest that the ratio of MACs to model parameters (macs_param) 658

offers a more consistent and reliable predictor than the model’s MACs. This is endorsed by 659

the strong correlation observed across different hardware configurations (Table 3). Similarly, 660

energy_per_sample emerges as a robust metric due to its direct temporal correlation with 661

energy use and can be easily calculated with short-lived experiments. This is the case 662

also for overall_efficiency – defined as the ratio of accuracy, throughput, and system 663

utilisation – that again can be used for long-term estimations, particularly for cases where 664

ML models force the hardware to operate close to its saturation point. 665

Finally, all the above metrics assume access to the energy consumption of the hard- 666

ware. When such measurements are not available, predictive models could be built based 667

on computational efficiency metrics, model hyperparameters, and hardware character- 668

istics, which could effectively estimate the expected energy consumption. Excluding all 669

energy-related metrics, we ran a Lasso regression to select the most important features 670

for that. Our dataset was created by combining the measurements across all hardware 671

configurations and models, and our train-test split was 80% : 20%. From this investigation, 672

the most important features chosen were the GPU’s memory utilisation, the MACs per 673

parameter, the work_done, the model_size_to_ram, the MACs and the model size, with a 674

combined importance of ≈ 65%. To that extent, a large investigation of multiple hardware 675

configurations and models can create a very interesting dataset for the community that can 676

be leveraged for future energy-efficient ML investigations. Moving on to the Generative AI 677

experiments, we conducted a similar Lasso regression investigation. For this investigation, 678

we also considered the cache hit rate to take into account the cached tokens and what 679

might happen in higher load scenarios. The most influential and negative factor is RPS, 680
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confirming that batching/multithreading is key to energy efficiency, and overall, the RPS, 681

the cache hit rate, and the average output tokens with combined importance of ≈ 75%. 682

Our Generative AI findings suggest that, although larger models (e.g., 70B) provide 683

improved capabilities, they also incur significantly higher energy costs per request, espe- 684

cially at lower RPS rates where resource utilisation is less efficient (Fig. 8). The Energy 685

Per Output token for the different models shows a similar trend in Fig. 9. Furthermore, in 686

Fig. 10, we saw that the CPU consumption of different model sizes per request completed 687

does not vary wildly between model sizer for a given hardware and a given RPS rate, whilst 688

the GPU consumption does vary significantly. For sustainable deployments, this indicates 689

that choosing appropriately sized models based on the anticipated RPS and computational 690

requirements can lead to substantial energy savings. For applications with predictable 691

and moderate request rates, smaller models in the range of 1-3 billion parameters offer an 692

advantageous balance between performance and energy efficiency. Furthermore, we can 693

also observe that operating the servers closer to saturation capacity significantly decreases 694

the energy cost per request due to the increased throughput in Tokens/second (as in the 695

case of Discriminative AI). However, it is also important to note that the latency is also 696

likely to increase the closer the server gets to saturation. 697

From a deployment perspective, larger models generally offer higher accuracy but at 698

the cost of significantly greater energy and resource consumption. To address this, fine- 699

tuning smaller models to achieve accuracy levels closer to those of larger models presents a 700

viable approach to reducing these costs. This strategy not only enhances energy efficiency 701

but also extends the long-term utility of the models. 702

Overall, and based on our findings, several practical implementation strategies and 703

recommendations can be derived for industry practitioners aiming to deploy energy- 704

efficient ML systems. For Discriminative models, selecting architectures such as ResNet or 705

VGG - which show strong performance while consuming significantly less energy—can 706

provide optimal trade-offs for real-time inference scenarios. Batch size tuning should be 707

used judiciously, particularly in hardware-constrained environments, to avoid unnecessary 708

power draw without compromising performance. For Generative models, our results 709

show that smaller LLMs (e.g., 3B or 8B) can achieve high throughput and energy efficiency 710

under moderate request loads, making them preferable for scalable inference workloads. 711

Integrating energy profiling into MLOps or GenOps frameworks enables dynamic model 712

selection, power capping, or adaptive inference based on operational requirements. 713

As our final thoughts, while our study provides a comprehensive empirical evalu- 714

ation of energy consumption across various Discriminative and Generative AI models, 715

we acknowledge that our investigation is based on a finite set of hardware configura- 716

tions. Considering other architectures (e.g., edge devices or ARM-based architectures) 717

and a larger set of hardware configurations will provide more comprehensive results 718

and correlations on how different model architectures operate across different hardware 719

configurations. Moreover, our Generative AI analysis concentrated solely on inference 720

workloads using pre-trained models, excluding the training phase due to its substantial 721

cost and limited accessibility for many practitioners. While we used real-world workloads 722

and datasets, our study does not account for all possible application-specific optimisations, 723

such as quantisation-aware training or adaptive model scaling at runtime. Finally, our 724

study focused on the model parameters but not so much on the individual layers of each 725

model. An investigation targeting the energy consumption of different model layer types 726

(e.g., convolutional, activation, pooling, etc.) will give more practical guidelines to ML 727

practitioners who aim to build energy-efficient models. All the above limitations could 728

be addressed in future research activities. Finally, integrating all the above practices in a 729

real-world MLOps or GenOps pipeline will reveal more areas of consideration that can 730

enhance the energy efficiency of such a system and enable more practical real-world impact 731

and adoption by industry practitioners. 732
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8. Conclusions 733

This study underscores the importance of energy-efficient practices in both Discrim- 734

inative and Generative AI models, providing empirical insights that challenge common 735

assumptions about energy consumption patterns. For Discriminative models, we show 736

that optimising model architecture, hyperparameters, and hardware provisioning can 737

yield significant energy savings without compromising performance, often surpassing the 738

benefits of marginal accuracy improvements. In Generative AI, particularly with LLMs, 739

balancing model size and reasoning with request-handling capability emerges as a crucial 740

factor for energy efficiency, where larger models may not increase energy demands as long 741

as utilisation is low. Our findings highlight that energy consumption dynamics vary signif- 742

icantly across training, inference, and hardware configurations, emphasising the necessity 743

for tailored strategies within each ML pipeline stage. Ultimately, this study demonstrates 744

that with informed choices around model design, configuration, and deployment, AI/ML 745

systems can be developed in alignment with environmental sustainability. By establishing 746

a robust framework for energy-conscious ML operations, this work lays the groundwork 747

for future research and industry practices to minimise the environmental impact of AI 748

advancements. However, our study is limited to a select number of models and hardware 749

platforms and does not cover edge devices or pipeline-level dynamic optimisations. Future 750

work could explore adaptive strategies for energy management, real-time deployment 751

considerations, and broader hardware-software co-design approaches to further improve 752

sustainability in ML pipelines. 753
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