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Abstract—The adoption of video conferencing and video com-
munication services, accelerated by COVID-19, has driven a
rapid increase in video data traffic. The demand for higher
resolutions and quality, the need for immersive video formats,
and the newest, more complex video codecs increase the energy
consumption in data centers and display devices. In this paper, we
explore and compare the energy consumption across optimized
state-of-the-art video codecs, SVT-AV1, VVenC/VVdeC, VP9, and
x.265. Furthermore, we align the energy usage with various
objective quality metrics and the compression performance for
a set of video sequences across different resolutions. The results
indicate that from the tested codecs and configurations, SVT-
AV1 provides the best tradeoff between energy consumption and
quality. The reported results aim to serve as a guide towards
sustainable video streaming while not compromising the quality
of experience of the end user.

Index Terms—Video Codecs, Energy Consumption,
VVenC/VVdeC, SVT-AV1, VP9, x.265.

I. INTRODUCTION

Over the past years, video network traffic is rapidly increas-
ing and currently accounts for the highest Internet-exchanged
traffic [1]. In addition, the recent COVID-19 pandemic con-
tributed to the rapid adoption of digital online services. As
a result, live and on-demand video exchange becomes the
norm for daily work and leisure activities [2]. Popular exam-
ples are on-demand streaming platforms (Netflix, Apple TV,
HBO, Amazon Prime, etc.) and live video conferencing and
collaborative online workspaces (Zoom, Webex, MS Teams,
etc.). Furthermore, the accessibility to powerful and affordable
devices, and the advances in cloud-computing technologies,
enable users to create and share live or on-demand short user-
generated content clips over social media/sharing platforms
(Instagram, TikTok, YouTube, etc.).

Associated with the demands and drivers described above,
the content creation and video communications pipelines
contribute significantly to global energy consumption. Cloud
computing services, data centers, display devices, and video
delivery are the main contributors to this increased energy
expenditure. While most climate change organizations focus
on the transport and energy sectors’ emissions, it is essential to
recognize that ICT technologies also generate a considerable
carbon emissions footprint [3]. Hence, efficiency must improve
as technology usage increases if sustainability targets are to
be met. According to a recent study by Huawei [4], data
centers currently consume about 3% of global electricity. This,
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however, is expected to rise to over 8% by 2030, a figure
larger than the energy consumption of some nations. While
estimates vary, there is a consensus of an impending major
global issue. Another critical issue is the energy required from
the users to capture, transmit, and display the video data.
Recent research has shown that the energy consumed on the
user side is much higher than on the provider side [5] given
that a single encoding is delivered to thousands of viewers.

While video streaming companies are highly engaged in
optimizing their algorithms to offer the highest quality of
experience, the energy consumption is not part of this process
yet. Each new generation of video codec reduces the amount
of data transmitted over the network at the cost of increased
computational complexity. A ∼50% efficiency gain of each
new codec usually comes with a vast increase in computational
complexity [6], [7] yielding to significantly increased encod-
ing times. However, decoding has been kept relatively low
complying with the requirement for smooth play-outs without
rebuffering. With this growth in computational load, video
providers, like Netflix, BBC, and others, are working towards
assessing the environmental cost and committing towards net
zero emissions [8], [9].

Various research activities have focused on modeling and
predicting the energy consumption at the decoder side [10],
[11]. As a result, tools that analyze the encoding statis-
tics and estimate the decoding energy consumption for
H.264/Advanced Video Coding (AVC) [12], High Efficiency
Video Coding (HEVC) [13], and Versatile Video Coding
(VVC) [14] are currently being developed. Similarly, re-
searchers in [7], [15] explore both the encoder and the decoder
on the latest VVC standard and compare it against HEVC.

Challenged by the above, in this work, we investigate the
energy, quality, and bitrate tradeoff across different state-
of-the-art codecs, particularly, x.265, VVenC/VVdeC, VP9,
and Scalable Video Technology AV1 (SVT-AV1). The energy
is measured both at the encoder and the decoder side. We
selected these production-optimized versions of codecs instead
of the reference software implementations as these are usually
deployed by the industry. After collecting the quality, rate,
and energy statistics, we compare their tradeoffs. Although
previous studies have performed codec comparisons in terms
of delivered quality and compression effectiveness [16], [17],
to the best of our knowledge, this is the first work comparing
these codecs with regard to their energy-rate-quality tradeoffs.
For the evaluation of the results, a new metric to reflect the



energy cost for the required bits is proposed. The reported
results aim to serve as a guide for the development of
sustainable optimization solutions for video compression and
streaming algorithms.

The remainder of this paper is organized as follows. Section
II describes the proposed method and metrics employed. Sec-
tion III presents the experimental setup, the test configurations,
and discussed the results. Finally, conclusions and future work
are outlined in Section IV.

II. METHODOLOGY

In this section, we provide details on the video codecs used,
the measurement setup, and the defined metrics.

A. Video Codecs

H.264/MPEG-4-AVC [12] was launched in 2004 and
remains one of the most widely deployed video coding
standards, even though the next generations of standards,
H.265/HEVC [13], [18], [19] and VVC provide enhanced
encoding performance [14]. H.265/HEVC was finalized in
2013, and H.266/VVC was released in 2020 with impressive
coding gains of over 30% compared to H.265/HEVC. Besides
the activities reported above, there has been increased activity
over the past three years in the development of open-source
royalty-free video codecs, particularly by the Alliance for
Open Media (AOMedia). AOMedia used VP9 [20], which was
earlier developed by Google, as a basis for AV1 [21], [22].
AV1 is currently the primary competitor for the current MPEG
video coding standards, especially in the context of streaming
applications.

The commercial deployment depends on the hardware and
the specifications of the display devices. Moving towards
an extended parameter space, namely higher bitdepth (up
to 16 bits) and higher spatio-temporal resolutions, the latest
standards are expected to roll out to more use-cases and
applications. Based on the above standards, optimized imple-
mentations of these codecs have been developed and served
as part of the FFmpeg software suite [23]. Similarly, SVT-
AV1 encoder was developed and optimized for CPU platforms
improving the quality-latency tradeoffs for a wide range of
video coding applications. It supports multi-dimensional paral-
lelism, multi-pass partitioning decision, multi-stage/multi-class
mode decision, and more [24]. Shortly after the finalization
of VVC, an open-source optimized implementation of the
VVC encoder (VVenC) and decoder (VVdeC) for random-
access high-resolution video encoding was released [25], [26].
VVenC was designed to achieve faster runtime than the VVC
reference software (VTM). VVenC also supports additional
features like multi-threading, rate control and more.

B. Measurements

We propose to measure the energy consumption on both the
encoder and the decoder ends. The encoding side is a good rep-
resentation of the energy consumption at the video provider’s
side (e.g. in data centers), while the decoding end reflects
directly to the decoding at the end-user devices (typically

TABLE I
THE VIDEO CODEC SOFTWARE VERSIONS AND BASIC CONFIGURATIONS.

Codec Command Invocations

x.265
(ffmpeg4.3)

ffmpeg.exe -s $widthx$height -r
$FPS -pix_fmt $YUVfmt -i $input.yuv
-c:v libx265 -preset veryfast -crf
$QP $output.mp4

VP9 (1.10.0) vpxenc.exe $input.yuv
--width=$width --height=$height
--verbose --codec=vp9 -o
$output.ivf --input-bit-depth=$bd
--max-q=$QP --min-q=$QP
--min-gf-interval=16
--max-gf-interval=16
--kf-min-dist=64 --kf-max-dist=64
--fps=$FPS/1 --cpu-used=1 --ivf
--bit-depth=$BD

SVT-AV1 (0.8.6) SvtAV1EncApp.exe -i $input.yuv
-w $width -h $height passes=2
cpu-used=1 -b $output.ivf
--fps $FPS --input-depth $BD
lag-in-frames=$GoP --keyint $KI
-q $QP

VVenC/VVdeC
(1.0.0)

vvencapp.exe -s $widthx$height -r
$FPS -c yuv420_10 -i $input.yuv
--preset medium -q $QP -o
$output.bin

mobile devices, laptops, or TVs). We formulate and perform
two basic measurements. The first power measurement is
performed during encoding, Penc, and the second during
decoding, Pdec. A third power measurement Pidle quantifies
the idle mode of our system. The energy consumption during
the encoding and decoding is derived from the measured power
minus the idle time measurements. Thus, over an observed
time interval, the encoding and decoding energy is obtained
by:

Eenc =

∫ Tenc

t=0

Penc(t)dt−
∫ Tenc

t=0

Pidle(t)dt (1)

Edec =

∫ Tdec

t=0

Pdec(t)dt−
∫ Tdec

t=0

Pidle(t)dt (2)

where Tenc and Tdec are the encoding and decoding times.
Our performance investigation is based on the integrated

power meter in Intel CPUs, the Running Average Power Limit
(RAPL) [27]. This tool is used in other similar research
activities (e.g., [10], [28]) and accurately measures the power
demand of the CPU, the DRAM, and the whole integrated cir-
cuit at 100ms intervals. Background processes of the operating
system can skew our measurements. Therefore, we started our
experimentation with a small-scale study assessing the energy
consumption at an idle state, Eidle. Later, by profiling the
power consumption during the encoding and decoding process,
we can assess the energy requirements for both processes.
We repeat until the confidence intervals of the distribution
of the measurements are tight validating their precision. For
the encoding process, a smaller number of encoding iterations
was required to converge, while for the decoding a greater



number of decoding loops was necessary. This is attributed to
the significant difference in the time duration of the encoding
and decoding processes.

C. Metrics

1) Quality performance: To assess the quality of the en-
coded test sequences, we selected full reference metrics typi-
cally used over the last years in the video technology research
community: the Peak Signal to Noise Ratio (PSNR) averaged
over all color components (YUV) and Video Multi-Method
Assessment Fusion (VMAF) [29]. The latter exhibits a higher
correlation with perceptual quality.

2) Compression performance: The performance of video
coding algorithms is usually assessed by comparing their
rate-distortion (or rate-quality) performance on various test
sequences. Objective quality metrics or subjective opinion
measurements are normally employed to assess compressed
video quality, and the overall Rate-Quality (RQ) perfor-
mance difference between codecs can be then calculated
using Bjøntegaard Delta (BD) measurements [30] on objective
metrics. We computed the BD metrics for the PSNR-Rate and
VMAF-Rate curves.

3) Energy performance: To compare the energy perfor-
mance across different codecs, we need to express the required
energy as a function of the bitrate. By observation, the Rate-
Energy (RE) curves both for encoding and decoding are
very close to linear (see Fig. 3). Therefore, based on the
slope of the RE line, we define another metric, the Energy-
to-Bitrate Ratio (EBR). EBR expresses the required energy
expenditure for different compression levels. The lower the
slope value (close to zero), the lower the EBR between the
tested compression levels and the more energy-efficient the
compression technology. In order to compute the slope of the
RE curves, we first fitted the RE points into a linear model,
namely

Ẽ = αR+ β , (3)

where α, β ∈ R+. Ẽ is the estimated energy either for
encoding or decoding. It is well known that in first-order
polynomials α expresses the slope. Thus, EBR values are
equal to α. The close-to-linearity behavior of the RE curves is
confirmed through testing on the dataset described below. All
R-squared values are higher than 0.92 indicating a very good
fit.

III. EVALUATION

In this section, we describe the test sequences employed for
the evaluation, the basic codec configurations, and report on
the findings from our experiments.

A. Test Data

The selection of test content is important as compression
is content-dependent and should provide a diverse and rep-
resentative coverage of the video parameter space. For our
experiments, we selected the SDR CTC test sequences [31]
reported in Table II. These sequences have been used for
many video codec evaluations, as they cover a typically used

range of spatial resolutions {Class D: 416×240, Class C:
832×480, Class B: 1920×1080, Class A: 3840×2160}, frame
rates -from 30 to 60-, and bit depths -from 8 to 10 bits.
Besides this, the content also covers a representative range
of spatial and temporal characteristics, as indicated by the
spatial and temporal information [32], [33] scattered in Fig. 1.
In the presented results, we have considered the sequences
with resolutions up to 1920x1080 (class B). These results are
adequate to convey the energy consumption trends.

TABLE II
TEST SEQUENCES AND BASIC CHARACTERISTICS.

Class Name No Frames Frame Rate
($FPS)

Bitdepth
($BD)

B MarketPlace 600 60 10
B RitualDance 600 60 10
B Cactus 500 50 8
B BasketballDrive 500 50 8
B BQTerrace 600 60 8

C RaceHorces 600 30 8
C BasketballDrill 500 50 8
C PartyScene 500 50 8
C BQMall 300 60 8

D RaceHorces 600 30 8
D BasketballPass 500 50 8
D BlowingBubbles 500 50 8
D BQSquare 300 60 8

Fig. 1. SI against TI for the test sequences.

B. Settings

Table I summarises the codec and the software ver-
sions deployed for our study. The selected codecs have
a different range of quantization parameters: [0 − 51] for
HEVC/VVenC and [0 − 63] for VP9/SVT-AV1. For the en-
coding points, we selected for HEVC/VVenC the $QP values
from the JVET recommended range [31], {22, 27, 32, 37}. For
VP9/SVT-AV1 codecs, we performed a linear mapping on
the range and rounded to the nearest integer. This resulted
in {27, 33, 40, 46}. For x.265, we selected the fastest preset
in order to create an anchor that would represent an efficient
codec that has low energy consumption. Note that the different
codec configurations are switching on and off coding tools
with a direct impact on the computational complexity and,
thus, on the energy consumption. Here, we examine only a
subset of the available configurations. All experiments were



executed on the same workstation with a Hexacore Intel Comet
Lake-S CPU at 3300MHz and 64GB RAM. More technical
details can be found in the project page 1.

C. Results

The computed performance metrics, BD and EBR, for the
tested codecs are reported in Table III. For the BD metrics
computation, the x.265 was considered the anchor codec. The
BD metrics were computed for both types of RQ curves, Rate-
PSNR and Rate-VMAF. Only the BD-PSNR (in dB) and BD-
VMAF are reported in pairs. We did not include the BD-Rate
results in this table, because differences in quality scales in
most cases are so big that the extrapolation across the bitrate
axis to compute the integral differences would not be accurate.
It is clear from the BD-PSNR values, that SVT-AV1 offers
more gains over x.265 compared to the other codecs. On the
other hand, according to BD-VMAF VVenC/VVdeC offers on
average the highest perceptual gains. Overall, VVenC/VVdeC
seems to be offering a good tradeoff for the achieved quality,
especially at low bitrate ranges. These results are confirmed
by the plots of the average RQ curves in Fig. 2.

The observed improved compression performance of SVT-
AV1 and VVenC/VVdeC in terms of quality comes at the
cost of higher complexity and, thus, energy consumption. This
is confirmed by the RE curves in Fig. 3 for both encoding
and decoding. It is also noticeable from these figures and
the EBR values in Table III that the two latest codecs, SVT-
AV1 and VVenC/VVdeC, have an almost equivalent slope in
decoding, although VVdeC requires more energy for decoding.
Regarding encoding, SVT-AV1 is performing significantly
better than AV1 with EBR enc values comparable to those
of x.265. It is also worth mentioning that although VP9
demonstrates the second best EBR dec and average decoding
energy consumption, its encoding energy consumption is the
highest on average compared to the other codecs.

Another interesting view of the tradeoffs between quality
and encoding/decoding energy can be derived from Fig. 4,
where the average PSNR and VMAF are plotted against the
encoding and decoding energy required. It is observed from
these plots that SVT-AV1 appears to offer the best tradeoff on
the encoding side in terms of quality and required energy, as
it achieves on average a very high quality (over 90 in terms
of VMAF).

All these results reflect the expected energy consumption
of these four codecs in a peer-to-peer scenario and for the
specific codec configurations. It is expected that the codecs
could behave differently under different settings.

IV. CONCLUSION

In this paper, we presented a study on the energy consump-
tion of four state-of-the-art codecs, SVT-AV1, VP9, VVenC,
and x.265, that are optimized to be used in production. The
experimental setup was built based on the codecs CTCs and
using a video dataset with sequences with spatial resolution

1https://angkats.github.io/Sustainability-VideoCodecs/
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Fig. 3. Average Rate-Energy Curves.

from 480p to 1080p. For the evaluation of the results, a
new metric to reflect the energy cost for the required bits
was proposed. From the results acquired with the specific set
of coding configurations explored, SVT-AV1 offers the best
quality-bitrate-energy tradeoff compared to the other codecs.
On the other hand, for low-energy solutions, x.265 seems to be
the best choice at the cost of lower video quality on average.

Future work will include further experimentation with the
different codec configurations. Moreover, we plan to extend
this use case to include an estimation of the networking energy
consumption to study the impact of the audience size on the
energy consumed by the end user (decoding energy). Further-
more, the concept of energy-driven codec selection associated
with the content and audience size under the constraint of
maintaining a high user experience will also be explored.
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