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ABSTRACT

Edge computing is rapidly changing the IoT-Cloud landscape. Vari-
ous testbeds are now able to run multiple Docker-like containers
developed and deployed by end-users on edge devices. However,
this capability may allow an attacker to deploy a malicious con-
tainer on the host and compromise it. This paper presents a dataset
based on the Linux Auditing System, which contains malicious
and benign container activity. We developed two malicious scenar-
i0s, a denial of service and a privilege escalation attack, where an
adversary uses a container to compromise the edge device. Fur-
thermore, we deployed benign user containers to run in parallel
with the malicious containers. Container activity can be captured
through the host system via system calls. Our time series auditd
dataset contains partial labels for the benign and malicious related
system calls. Generating the dataset is largely automated using a
provided AutoCES framework. We also present a semi-supervised
machine learning use case with the collected data to demonstrate
its utility. The dataset and framework code are open-source and
publicly available.

CCS CONCEPTS

« Information systems — Data mining; - Security and pri-
vacy — Intrusion/anomaly detection and malware mitiga-
tion.
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1 INTRODUCTION

The confluence of the Internet of Things (I0T) and Cloud Computing
research has led to a canonical architecture consisting of three
standard tiers: the backend, the edge, and the endpoint [1, 4, 18].
The endpoints are resource-constrained IoT devices with limited
computing and energy resources and equipped with various sensors.
The endpoints send their sensor data to an edge device, usually over
LR-WPAN communication interfaces. The edge devices, typically
part of an infrastructure (e.g., building, smart city), collect endpoint
data and communicate to the backend. The edge layer, with more
computational resources than the endpoints, provides end-users
with the capability to run their applications with lower latency
while communicating with the endpoints.

An example of such an architecture is the Urban Multi Wireless
Broadband and IoT Testing for Local Authority and Industrial Ap-
plications (UMBRELLA) platform [6]. UMBRELLA allows the users
to develop different applications and deploy them as containers
on the edge nodes. The applications range from air quality moni-
toring, street light maintenance, robotics applications, private 5G
for warehousing, logistics, and large-scale wireless testing. The
UMBRELLA platform consists of 230 nodes, installed on public
lampposts spread across 7.2km of South Gloucestershire roads and
equipped with approx. 1500 sensors [9]. Developing applications
running in containers on edge devices makes shipping, testing, and
deploying easier. However, it also opens security and privacy issues
where malicious applications running in a container may compro-
mise the edge device and possibly the whole network. This paper
describes the AutoCES framework and the data generated for an
archetypal edge device with two container escape scenarios. The
AutoCES framework supports experiments with varying auditing
rules, container escape scenarios with configurable annotations,
and workload background activity.

Figure 1 depicts the UMBRELLA hardware [9] used as the edge
device. The authors were provided administrative access to the
Umbrella nodes and configured them for the experiments as per
the requirement. UMBRELLA uses Docker as the supported con-
tainerisation implementation [10]. The node (host system) runs
auditd tool, part of the Linux Auditing System, to collect system
calls between the kernel and applications, including those running
in containers. We used awesome-docker containers [3] to generate
benign applications using docker-compose container management
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Figure 1: Edge Device (UMBRELLA Node) Overview
tool [2] and generate background container activity. We also devel-
oped a container to collect temperature sensor data from several seenariofs)
remote IoT devices. We use custom scripts to simulate Denial of init | start escape attack stop | destroy

Service (DoS) attacks and privilege escalation attacks to generate
malicious applications. Finally, we describe a use case with the
dataset using a semi-supervised machine approach that could sup-
port anomaly detection. There are existing similar datasets. For
example, Tien, et al. [16] provide a container-based dataset for
anomaly detection. However, it lacks container escape scenarios
and also lacks a framework for generating new datasets. To the best
of our knowledge, there is not an equivalent kernel-based container
escape dataset. The contributions of the paper are as follows:

e Annotated container-escape dataset.

e Open-source AutoCES framework for generating new container-

escape datasets.

The paper is structured as follows: § 2 provide details about the
hardware, framework, and how the data was collected. § 3 provides
the container escape scenarios. § 4 provides the semi-supervised
use-case. § 5 concludes our work.

2 DATA COLLECTION

This section provides details on the edge devices used for gathering
logs of the different container escape scenarios, AutoCES frame-
work, auditd configuration, and system logging details.

2.1 Edge Devices

The UMBRELLA platform is a large-scale real-world testbed for IoT
applications [6]. The UMBRELLA edge device [9] includes a Rasp-
berry Pi 3 Compute Module [14], a Jetson Nano [12], and various
communications interfaces. The communication interfaces include
multiple radios such as 802.15.4 (using nRF52480) and LoRa. Finally,
the edge node connects to the backend using either fiber (about half
of the network) or WiFi (the other half of the network - the fiber
nodes act as WiFi gateways). We perform the dataset collection on
the Raspberry Pi component. The UMBRELLA Raspberry Pi runs
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Figure 2: Framework/Experiment Timeline

Raspbian GNU/Linux 10 (buster), Linux version 5.4.83-v7+ on an
ARMV7, 32-bit processor. The UMBRELLA is set up with Docker
to run containers for various applications on the Edge. Figure 1
depicts the UMBRELLA environment.

We also provide a Raspbian Buster virtual machine (VM) and
provide instructions for its configuration [13]. Though this is more
artificial and lacks many of the peripherals of the UMBRELLA
device, it allows users to generate their own datasets.

2.2 Framework

The AutoCES framework is a set of Python scripts that essentially
automate running experiments to generate a dataset. It allows the
user to configure the time duration of the experiments, when the
attack starts and stops, configure the auditd and system logging.
For instance, a user can run the experiment for 10 mins in which
the attack starts at 5 mins, stops after 2 mins. In such a case, an
annotation file would annotate the auditd logs as malicious for the
duration of 5 (attack start time) - 7 (attack stop time). The Auto-
CES would label the rest as normal traffic. AutoCES allows having
partial annotations that support container escape scenarios. Fur-
ther, the framework configures the auditd rules and starts/stops
it to provide efficient logging and automatically generates the log
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files. The framework can be used on the UMBRELLA edge device
and Raspian Buster VM (simulated edge device). The framework
is structured to generically allow various scenarios to run during
an experiment set up the logging. Figure 2 depicts the timeline of a
scenario running. The init method allows the scenario to set up the
initial configuration, such as activities that should not be included
in the logging (e.g., starting a Docker container). The init also pro-
vides the scenario with a scheduler and annotator function to allow
creating events and annotating the event time to the annotation
log file.

2.3 Auditd Logging

The Auditd monitoring tool is based on the Linux Security Module
(LSM). auditd allows access points to log kernel routines, including
system calls, logins, password changes, file access, and others. The
auditd tool is configured using a rules language and comes with a
default set of pre-configured rules. For the dataset, we chose to use
the following pre-configured rules files [15].

e 10-procmon.rule: monitor process executions

e 30-stig.rules: requirements set by Security Technical Imple-
mentation Guides (STIG)

e 31-privileged.rules: monitor use of privileged commands

o 33-docker.rules (custom): monitor Docker container activity
(file-based)

e 41-containers.rules: log container events

e 43-module-load.rules: monitor kernel module insertion

e 71-networking.rules: monitor incoming/outgoing network
connections

e 99-finalize.rules - Finalize (immutable)

We added a custom rules file, 33-docker.rules, for better monitor-
ing Docker container activity. Additionally, when the framework
starts, it finds the process identifier of the docker-proxy process and
adds a rule to log its activity. A rule is also added to exclude the
experiment process from the auditd log.

We note that we could have used a log everything rule. However,
we found that with the minimal workload, the logging alone con-
sumed between 30-50% of the CPU, and a more realistic scenario
would use these recommended pre-configured rules.

2.4 System Logging

The Python psutil library (version 5.8) is used for logging system
information such as CPU/memory usage and determining the logs
collection overhead. Though auditd captures system calls, it does
not capture system information such as CPU and disk utilization. To
account for this, we also log system information. The idea to include
system logging is to check the possibility of detecting malicious
activity by correlating auditd and system logging data. Each system
logging event has roughly 18 records. The following is a summary
of a system logging event record. The dataset is produced with one
system logging event per second though the framework allows this
to be specified.

"timestamp": 1627509275.858,

"cpu_percent_percpu": ["..."],
"getloadavg": ["..."],
"virtual_memory": ["..."],
"disk_usage": ["..."],
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Figure 3: Experiment Configurations

"net_if_stats": ["...

u:l’

3 SCENARIOS

The AutoCES allows the user to configure the experiments and
execute them on the UMBRELLA edge device or VM. Currently
the UMBRELLA testbed allows users the ability to run experiments
on the platform [6]. However, the auditd utility would need to be
enabled. The user can then decide which scenarios to use via the
framework.

The user can configure the experiment based on four parameters:
i) where to run the experiment Edge: umbrella or the Rasbian Buster
VM,; ii) Scenarios: the scenarios to run (DoS, privilege escalation);
iii) Workload: the benign background services running; iv) Logging:
represents the logging system(s) to be enabled. Each experiment
consists of the following.

e Edge Device = {umbrella, vm}

e Scenario Containers = {dos, privesc}

e Workload Containers = {iot, prometheus, grafana}
e Logging = {auditd, system}

Every experiment includes all logging and workload options but
can choose which edge and scenario. Figure 3 shows the four differ-
ent experimental configurations. This section further describes the
container escape scenarios and workload containers. The container
escapes were partially derived from Wilhelm [17] and require run-
ning the containers in a reduced security mode (e.g. unconfined
security option or privileged mode or added Linux capabilities).
Though possibly preventable (e.g. confined apparmor, seccomp),
misconfiguration always remains as a possibility. Regardless, the
dataset remains valid providing information about container escape
behaviour.

A single experiment consists of the auditd and system files, an
annotation file (provides timestamps when the attack starts), and a
rules file (derived from auditctl -1). Each experiment is 15 minutes
long and contains one escape-attack that is randomly scheduled
to occur within the interval. There are 64 experiments for each
configuration shown in Figure 3. The dataset consists of these four
configurations for a total of 256 experiments.

3.1 Container Escape with Denial of Service

This scenario first performs a container escape by mounting a
filesystem (not a Docker volume) and writing to a shell script. The
container then uses the cgroup notify/release mechanism to execute
the shell on the host. The shell script currently consumes 2 CPU’s
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(a) Example Process Graph. Nodes are the process_id and the
edges are the relationships between parent and child. The nodes
in red represents processes that were involved during the attack.
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(b) Node Embedding for Example Process Graph. Node embed-
dings help to find the processes involved during attack phase as
they cluster together well.

Figure 4: Auditd to Graph

for 20 seconds (this is configurable). The idea is to simulate a DoS
type attack or an unauthorised usage (e.g. Bitcoin mining). This
scenario runs in a ubuntu container. The framework launches the
following Docker command to start the container.

docker run -d=true --name=ESCAPE_DOS --rm -it
--cap-add=SYS_ADMIN --security-opt
apparmor=unconfined ubuntu_shell_dos bash

3.2 Container Escape with Privilege Escalation

The privilege escalation scenario, denoted privesc, uses the volume
feature of Docker to mount a file system over the host device. The
container then writes to the /etc/sudoers.d directory adding a file
that modifies a user’s privilege allowing them to execute sudo com-
mands without a password (i.e. increased privileges). This scenario
runs in an alpine container. Following is the Docker command used
to start the container.

docker run -d=true --rm --name ESCAPE_PRIVESC
-v /:/privesc -it alpine_volume_privesc /bin/sh'

3.3 Workload Containers

The workload containers are intended to provide more realistic
activity on the edge device in addition to the container escape
activity. Instead of attempting to define realistic, we submit that
an edge device would have a container interacting with remote
endpoints collecting their data, storing, possibly analysing, and
visualising the data.

The iot container communicates with three remote endpoints
that send a temperature sensor reading every five seconds. The
communication includes authenticated encryption and a simplified
key transport protocol. We use the awesome-compose [3] setup for
the prometheus container providing time-series data storage and the
grafana container providing a web interface for the visualization
of data.

Notable deficiencies are that the iot container should be feed-
ing data to the prometheus container and there should be some
additional workload applied to the grafana container to simulate
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user interaction. These are left as future work though we note the
framework would also support this more integrated setup.

4 SEMI-SUPERVISED MACHINE LEARNING
USE CASE

We demonstrate the utility of the dataset with a use case to assist
in data labelling. The auditd data is first converted into a process
graph, which depicts the parent-child relationship between pro-
cesses. There are certainly other conversions. For example, Sadegh,
et al., [11] convert auditd data into a provenance graph to assist in
hunting for cyber threats. A node embedding technique [8] then
takes the graph’s nodes and automatically transforms them into
vectors suitable for subsequent processing, including classification.

Figure 4a shows the process graph converted from a DoS ex-
periment run on the UMBRELLA. The red nodes are labelled as
malicious and the remaining nodes are labelled as benign. The red
nodes are processes active during the annotated attack interval.
This mostly includes system calls that are part of the escape/attack
but also includes some innocuous system calls. Each graph’s node
is then converted into a vector in 128-dimensions using the graph
information only. We used the node2vec [8] implementation in the
StellarGraph library [5] with 100 random walks per node. Figure
4b shows the node’s vectors visualised using t-SNE to project onto
two dimensions. The results show that the node’s vector represen-
tation is similar to the original graph and has clear clusters of the
processes involved in the DoS. The node’s vectors were then used
to train a logistic regression classifier that achieved 97% F1 score to
predict whether the process was benign or malicious. Only 10% of
the data was used for training while the remaining 90% was used
for testing. Thus, a small set of training instances could help to
annotate the remaining instances in a semi-supervised situation.
These results provide evidence for the utility of the dataset. As
previously mentioned, there are certainly other use cases, notably,
extracting features from the auditd logs along with the time interval
based annotations to train an autoencoder for anomaly detection.
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5 CONCLUSION

The dataset fills an important gap for security researchers and
practitioners dealing with edge container behaviour. The dataset
includes novel, partially annotated container escape information
with reasonable background activity. The dataset was generated
from an exemplary edge device and also from a more artificial vir-
tual machine. The presented framework automates experiments
and allows users to easily generate new datasets. We also showed
the utility of the dataset with a supervised machine learning use
case. The paper also has limitations. Firstly, the dataset currently
only provides partial annotations with time intervals, including
benign and malicious system calls. For instance, the time interval
marked malicious will also contain benign system calls. Secondly,
the dataset currently has only two container escape scenarios (DoS
and Privilege Escalation). Container escapes and hardening are vast
topics [7]. However, we chose these two attacks as they are promi-
nent approaches and were reasonably easy to configure. Finally,
our selection of benign background container activity and auditing
rules may not be sufficient for other use cases.
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