
EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

Cybersecurity in Motion: A Survey of Challenges and
Requirements for Future Test Facilities of CAVs
Ioannis Mavromatis∗1, Theodoros Spyridopoulos3, Pietro Carnelli∗2, Woon Hau Chin2, Ahmed
Khalil4, Jennifer Chakravarty4, Lucia Cipolina Kun4, Robert J. Piechocki4, Colin Robbins5,
Daniel Cunnington5, Leigh Chase6, Lamogha Chiazor6, Chris Preston7, Rahul7and Aftab Khan∗2

1Digital Catapult, London, UK
2Bristol Research & Innovation Laboratory, Toshiba Europe Ltd., Bristol, UK
3School of Computer Science & Informatics, Cardiff University, Cardiff, UK
4Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK
5Nexor Ltd., Nottingham, UK,
6IBM Research, Winchester, UK,
7Honda R&D Europe (UK) Ltd., Reading, UK

Abstract

The way we travel is changing rapidly, and Cooperative Intelligent Transportation Systems (C-ITSs) are at
the forefront of this evolution. However, the adoption of C-ITSs introduces new risks and challenges, making
cybersecurity a top priority for ensuring safety and reliability. Building on this premise, this paper presents an
envisaged Cybersecurity Centre of Excellence (CSCE) designed to bolster research, testing, and evaluation of
the cybersecurity of C-ITSs. We explore the design, functionality, and challenges of CSCE’s testing facilities,
outlining the technological, security, and societal requirements. Through a thorough survey and analysis,
we assess the effectiveness of these systems in detecting and mitigating potential threats, highlighting their
flexibility to adapt to future C-ITSs. Finally, we identify current unresolved challenges in various C-ITS
domains, with the aim of motivating further research into the cybersecurity of C-ITSs.

Received on 26 October 2023; accepted on 07 December 2023; published on 31 December 2023
Keywords: C-ITS; Cybersecurity; CAV; Cybersecurity Centre of Excellence; Cybersecurity Ecosystem; Threat
Detection/Mitigation

Copyright © 2023 I. Mavromatis et al., licensed to ICST. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eetinis.v10i4.4237

1. Introduction
Cooperative Intelligent Transportation Systems
(C-ITSs) and the Connected Autonomous
Vehicles (CAVs), are expected to revolutionise the
Mobility-as-a-Service (MaaS) paradigm [1]. As we move
towards smarter and more sustainable cities, there
will be numerous opportunities for MaaS use-cases in
areas such as on-demand transportation, accessibility,
and road safety [2]. However, these use cases will
require specialised hardware, complex software
implementations, and scalable data architectures [3].
C-ITSs integrate multiple entities for enhanced

∗Corresponding authors: Ioannis.Mavromatis@digicatapult.org.uk,
{Pietro.Carnelli, Aftab.Khan}@toshiba-bril.com

transport solutions. As they grow, C-ITSs become
complex System-of-Systems (SoS), where independent
systems combine to achieve broader functionalities.
This complexity introduces significant cybersecurity
risks. The different “data surfaces”, communication
interfaces, and Internet-facing entry points for such an
ecosystem increase the potential vulnerabilities and
attack surfaces within a C-ITS [4]. This is especially
concerning as the increase in vehicle autonomy means
a single attack point could have catastrophic effects on
the entire C-ITSs ecosystem and the fleet of vehicles [5].

As CAV adoption increases, a robust cybersecurity
assurance framework is needed to ensure safety
and public trust [6]. Therefore, this paper presents
the concept of a Cybersecurity Test and Evaluation
Facility (CTEF) targeting C-ITSs and a CAV-enabled

1
EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems
| Volume 10 | Issue 4 |

http://creativecommons.org/licenses/by/3.0/

Cybersecurity Centre of Excellence (CSCE) and a survey
of the existing challenges and requirements for such
frameworks. CTEF is meant to provide comprehensive
testing, certification and monitoring services for CAVs.
The cybersecurity considerations of a C-ITS should
be tackled holistically [7]. Our proposed solution
revolves around cybersecurity testing, evaluation and
certification capabilities for future CAVs and related
C-ITS infrastructure (e.g., future roadside CAV traffic
coordination units), as well as provisions for live attack
monitoring of future C-ITS implementations.

The proposed framework includes components
for in-vitro, i.e., separate/“glass-walled”, testing
facilities in isolated environments, in-situ, i.e.,
“on-the-premises”, realistic hardware/software
evaluation using simulated environments, and in-vivo,
i.e., real-world or live testing conditions in actual
operational scenarios. It should also support scalable
and extensible architectures, cybersecurity assessment
schemes, and real-time monitoring of threats. CTEF is
intended to investigate cybersecurity vulnerabilities
and threats within a sub-system, system, or SoS fashion.
To achieve the above, both virtual and physical test
facilities are required.

Overall, this paper makes recommendations in
four key areas - testing facilities, architectures,
assessment schemes and ecosystem requirements.
Based on an extensive study of existing best practices
and requirements, we describe the methodology for
achieving the CTEF’s vision and establishing a rigorous
cybersecurity assurance program for CAVs. Our work
discusses good practices, standards, considerations,
and technological aspects (architectures, technologies
and techniques) to accelerate the safe and secure
development, trialling, testing and deployment of a
cybersecure C-ITS.

Like any other CSCEs found in smart cities or smart
factories, key principles like futureproofing, scalability,
extensibility, modularity, flexibility and reliability need to
be considered for such a framework [8]. The integration
of new tools will enable continuous enhancement
of the CTEF’s capabilities. Architectures based on
concepts like fog computing [9], virtualisation [10]
and cloud-native/serverless computing [11] are critical.
Our work discusses their importance, adoption and
integration within a unified framework. Detailed test
regimes combining automated and manual testing are
also described. Assurance frameworks aligned with
standards like ISO 21434 [12] are discussed. Finally,
the ecosystem needs of the CTEF in terms of expertise,
infrastructure, and collaboration with regulators and
academia are also highlighted.

This paper is structured as follows. Sec. 2 explores
the foundational aspects of CAVs, describing the data
and attack surfaces and the main system components
found in C-ITSs. Related articles are described in Sec. 3,

Table 1. List of Acronyms.

Acronym Description

3GPP 3rd Generation Partnership Project
ADAS Advanced Driver-assistance System
ARC-IT Architecture Reference for

Cooperative and Intelligent
Transportation

C2C Car-2-Car
CAV Connected Autonomous Vehicle
CA Certification Authority
CIA Confidentiality, Integrity and

Availability
C-ITS Cooperative Intelligent

Transportation System
CPPS Cyber-Physical Production System
CSCE Cybersecurity Centre of Excellence
CTEF Cybersecurity Test and Evaluation

Facility
C-V2X Cellular Vehicle-to-Everything
DoS Denial-of-Service
FaaS Function-as-a-Service
GDPR General Data Protection Regulation
ITS Intelligent Transportation System
MaaS Mobility-as-a-Service
MitM Man-in-the-Middle
ML Machine Learning
NCSC National Cybersecurity Centre
O-RAN Open Radio Access Network
OSS Open-Source Software
OTA Over-the-Air
PaaS Platform-as-a-Service
PKI Public Key Infrastructure
QoS Quality-of-Service
RAT Radio Access Technology
SaaS Software-as-a-Service
SAMM Software Assurance Maturity Model
SCA Software Composition Analysis
SDLC System Development Life Cycle
SecaaS Security-as-a-Service
SIEM Security Information and Event

Management
SOAR Security Orchestration, Automation

and Response
SoS System-of-Systems
V2G Vehicle-to-Grid
V2I Vehicle-to-Infrastructure
V2P Vehicle-to-Pedestrian
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything
VANET Vehicular Ad-hoc Network

2

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

providing insights into the existing literature. The core
idea behind the paper is presented in Sec. 4, where we
detail the requirements and its scope. Sec. 5 further
discusses the architectural design of the CSCE. The
test facilities’ design and requirements are described in
Sec. 6, explaining the in-vitro and in-situ testing and
analysis. Sec. 7 presents the core technologies required
within CSCE and aligns them with the requirements
introduced earlier. The steps that should be taken for
smooth integration with the real world are commented
on in Sec. 8. The challenges identified across the various
entities within CSCE are discussed in Sec. 9, addressing
potential hurdles and considerations for a real-world
integration and emphasising aspects like privacy and
operational requirements. Sec. 10 concludes the paper
and summarises our key findings and contributions.
Finally, a table summarising all the acronyms can be
found in Tab. 1.

2. Background

C-ITSs refers to transport systems where the
cooperation between two or more sub-systems (e.g.,
personal, vehicle, roadside and central) enables
and provides enhanced services, compared to the
traditional Intelligent Transportation Systems (ITSs).
C-ITSs utilise wireless communication links to enable
real-time Vehicle-to-Everything (V2X) connectivity.
This, in turn, enables far greater coordination between
road users and the involved systems and creates safer
and more efficient traffic flows [13].

A C-ITS reference architecture provides a common
framework for planning, defining, and integrating
all system components [14]. It essentially provides a
common basis for planners and engineers with differing
concerns to conceive, design and implement systems
using a “common language”. Most critically, reference
architectures can help perform attack surface analysis,
identify threats, and understand how an attack could be
executed.

The literature provides various reference
architectures. Some lack important details to derive
certain attack categories [15], while others are too
intricate to interpret by vehicle manufacturers and
CAV system designers [16]. For our work, we use
the reference architecture from [14] as a basis, also
shown in Fig. 1. This reference architecture depicts
the main components for CAVs and the devices and
peripherals that interact with a CAV, proposing a
hybrid Functional-Communication viewpoint that
balances the interactions’ complexity and depth. More
details about the architecture and a description of the
components can be found in [14].

2.1. CAV Attack Surface
To identify attack surfaces that a threat agent would
exploit, two questions should be considered, i.e., what a
CAV does and how the CAV can be interacted with to be
attacked. As depicted in Fig. 1, various communication
buses and links across multiple physical and virtual
devices and entities span both the “Cloud” and “Edge”
layers.

Following that, we can define an attack surface that
constitutes multiple entry points or attack vectors that
a malicious user could exploit to gain control, enter or
extract data, or perform other malicious activity within
a C-ITS [17]. Any device, system, software, or actor
(as shown in Fig. 1), both internal and external, that
communicates with a CAV component contributes to
the attack surface.

The “digital data surface” underpins the attack
surface. This constitutes the individual data points
that flow between system components. The system
components will transfer data across the “surface” that
could be vulnerable to manipulation and attack. We
broadly refer to the “data surface” as the data points
generated by CAV platforms and flow between local and
networked components [3] (V2X). Finally, a single “data
flow” could be described as the flow of information
between two specific endpoints (blue lines in Fig. 1).

2.2. Modelling and Representing the Data Surface
The “data surface” resides “above” in the CAV platform,
providing a logical representation of the platform.
In other words, it could be described as a “data
representation” of the system platform as seen from
the network perspective. This abstraction is crucial for
understanding the flow of data, its sources, and its
consumers within the CAV ecosystem.

CAV systems can be considered as individual entities
or SoSs – the latter being a way to group entities
that provide a common service or function [18]. An
individual CAV platform can be described in terms of:

• Systems: a collection of interconnected elements
(hardware, firmware, software, etc.) that, combined,
achieve specific functionality (or well-bounded set
of functions). For instance, a navigation system in a
CAV might combine GPS hardware, map software,
and route optimisation algorithms.

• Sub-systems: individual instances of hardware,
firmware and software that can be aggregated to form
a system. For example, the GPS module can be a
sub-system within the above-mentioned navigation
system.

• Devices: components within sub-systems that
generate or consume the actual data flowing through
the CAV platform. The data could be simple data

3

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

Figure 1. CAV and devices & peripherals reference architecture [14].

types such as numbers, strings, or more complex
structures.

A system is a collection of sub-systems that provide
a specific service or capability. The data systems can
be described broadly as: 1) producers: entities that
yield data, such as sensors or the output of processing
functions; 2) consumers: entities that take data as
input, such as applications components or the input to
processing functions.

The data surface can be expressed geometrically
across d dimensions with n data points. It is important
to take into account the data types and structures (e.g.,
simple numeric variables or complex XML structures)
as we create layers in the model for different types
of data interactions. For instance, raw sensor data
might be on one layer, processed data on another,
and application-level data interactions on a third.
Finally, for a more detailed model, one should include
information about the time and frequency domains of
the data interactions. This can help in understanding
real-time requirements and optimising data flow for
efficiency. Some more information about the above can
be found in [18], described from the point of view of a
Smart City scenario.

2.3. C-ITS Communication Domains

Having defined an attack surface and how the
data are represented and modelled, we can later
identify potential attack vectors, considering the
different communication domains. The Car-2-Car
(C2C) Communication Consortium identifies three key
domains [19]:

• Intra-vehicle domain: The different systems and
components inside the vehicle (e.g., sensors,
onboard computers, infotainment system,
Advanced Driver-assistance System (ADAS) features,
powertrain, etc.).

• Ad-hoc domain: The Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication
systems that allow real-time data exchange between
vehicles and other entities on the road.

• Infrastructure domain: The fixed infrastructure
systems like traffic management centres, roadside
sensor networks, edge computing nodes, cellular
base stations, etc., that provide connectivity support,
traffic management, emergency response and other
C-ITS services.

4

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

As C-ITSs are getting more complex, the above has
been further extended recently, adding:

• Central cloud domain: The remote cloud computing
infrastructure that provides additional services
and capabilities to vehicles and transportation
infrastructure. For example, it can offer intelligent
decision-making agents for traffic management [20].

• Personal domain: The mobile devices, wearables
and other gadgets carried by individuals that
can connect to vehicles and infrastructure in a
Vehicle-to-Pedestrian (V2P) fashion [21].

• Enterprise domain: The third-party service providers
and businesses that are stakeholders in the C-ITS
ecosystem [22]. For example, logistics companies
managing fleets, insurance providers, location-based
service companies, etc.

Sophisticated attacks may target multiple CAV
components across various domains. Therefore, a
single attack could exhibit multiple data flows
across the data surface. In terms of potential CAV
cyber-attacks that constitute the attack surface, an
attacker may exploit vulnerabilities within the physical
infrastructure (e.g., electric charging stations), perform
adversarial modifications to sensor data [23, 24],
perform poisoning attacks to intelligent agents [25], or
perform network attacks that disrupt communications
(e.g., a Denial-of-Service (DoS) attack [26]). For a
comprehensive overview of various attack points that
constitute the CAV attack surface, we refer the reader
to [13, 14, 27, 28].

2.4. Security Objectives for a C-ITS
From a cybersecurity standpoint, and based on the
above, the five main goals to be achieved are:

1. To model and understand potential attack vectors in
complex CAV and C-ITS architectures.

2. To detect malicious network interactions,
differentiating these amongst a high volume of
valid interactions.

3. To distinguish tampered data from normal data and
identify attacks in intelligent agents.

4. To protect CAVs and C-ITSs through the deployment
of detection and mitigation techniques, limiting the
impact of a cyber-attack given the interconnected
nature of CAV systems.

5. To ensure the low-latency operation of the deployed
detection and mitigation functionality.

The above points have been demonstrated in practice
in the past. For example, authors in [29] demonstrated

how they exploited a vulnerability in the vehicle’s
infotainment system (connected via a cellular network)
to remotely take control of the vehicle (goal no.1).
In [30], a false data injection attack is demonstrated
and the authors provide a way to detect and isolate
the attack from regular data exchanged within a CAV
application (goal no.2). A sensor fusion technique
and a model to extrapolate the vehicle’s position
and project projection were used in [31] to mitigate
against tampered speedometer data (goal no.3). The
importance of mitigation strategies is discussed in [32],
describing how Over-the-Air (OTA) updates can help
manufacturers remotely patch vulnerabilities and
reduce the potential impact of cyber-attacks (goal
no.4). Finally, in [33], the importance of reliability
and reduced overhead is discussed proposing a
low-overhead model to identify malicious roadside
basestations (goal no.5).

The exchange of data and the various wireless
interfaces increase the potential attack vectors
within a C-ITS. These threats can expose critical
traffic systems and compromise the safety of
all passengers and pedestrians. Therefore, it is
essential to introduce a solid security framework.
Architecture Reference for Cooperative and Intelligent
Transportation (ARC-IT) [34] describes this framework
in the context of three cybersecurity pillars, i.e.,
Confidentiality, Integrity and Availability (CIA).
Briefly, the CIA defines:

1. Confidentiality: Restricts access to sensitive
information based on the type of information disclosed.
For example, confidential data from individual CAVs
should be protected as it can be misused. Vehicle
ID and speed data can easily identify if the vehicle
violates speed limits [35]. Therefore, CAVs should use
infrastructure network services to preserve anonymity.

2. Integrity: Guarantees the reliability and accuracy
of the information and messages exchanged while
preventing the alteration of the data from unauthorised
intentions or authorised but unintended acts. For
example, a sensor fusion mechanism could be used
to avoid data modification. Abnormalities could be
detected based on the information collected from
different but complementary sensors (e.g., camera and
LiDAR data). Later, the data could be either discarded
or sanitised before being used [36].

3. Availability: Ensures authorised access to critical
information and system. Availability aims to allow
access rather than restrict it. For example, traffic
information should be publicly available to all CAVs at
any given time [37].

These three are the most crucial components of
cybersecurity and form a model to guide policies for
C-ITS information security. Balancing between them,

5

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

we can ensure high-quality security standards and
policies without compromising the usability of a C-ITS.
All cybersecurity services support one or more of these
objectives. Similarly, all threats undermine one or more
of these objectives. Comparing security systems using
these metrics can aid designers in selecting between
alternatives.

Trust and privacy are two vital aspects of C-ITSs
cybersecurity. Trust is achieved by ensuring the
exchanged information’s integrity, authenticity,
and confidentiality. On the other hand, privacy
requires rigorous measures to protect personal data
from unauthorised access and potential misuse.
ETSI TS-102941 [38] highlights the significance of
these principles in information exchange within
transportation systems. The technologies integrated
into CAVs and C-ITSs provide a way to track
individuals and vehicles with heightened precision.
Maintaining data privacy, such as the license plate or
vehicle owner, becomes essential. For example, General
Data Protection Regulation (GDPR)1 establishes
stringent data protection and privacy guidelines for
individuals and serves as a gold standard for data
handling worldwide. Adhering to GDPR provisions, a
C-ITS can reinforce user trust, ensure compliance, and
ensure the fundamental right of privacy for travellers,
fortifying their confidence in the system.

2.5. C-ITS Concepts and System Design
Sec. 2.3 discussed the communication domains
within a C-ITS. A C-ITS, being an SoS, is responsible
for: i) handling scalable applications consisting of
independent data flows, ii) employing multiple
Radio Access Technologies (RATs) for each flow
and mapping them on different layers according to
target Quality-of-Service (QoS) constraints, iii) using
intelligent agents for decision making. Fig. 2 shows an
example of such a system, demonstrating the different
data, control and access planes and some example
services.

As seen in the literature, future C-ITS are meant to
provide different types of services, each one with its
own QoS requirements [3, 39]. This could be achieved
by providing enhancement layers, extending the base
layer’s functionality and fulfilling the scalability and
extensibility requirements. For example, [3] proposes
three main communication planes: i) a base layer,
usually based on IEEE 802.11p/bd, responsible for
base safety critical message exchange, ii) an initial
enhancement layer, based on sub-6GHz 3rd Generation
Partnership Project (3GPP) standards and Cellular
Vehicle-to-Everything (C-V2X) technologies, that can

1GDPR official website: https://gdpr-info.eu/

Figure 2. The high-level system design of an C-ITS system,
showing the interaction between the communication domains, the
data exchanged and the different services.

support services spanning over large geographical
areas, iii) a second enhancement layer, based on
Millimetre-Waves (using IEEE 802.11ad/ay or mmWave
5G NR), that fulfils the requirements for very high data
rate and very low latency of the future C-ITS services
(also seen in Fig. 2). These technologies and the different
layers align with the principle of a scalable data
infrastructure mentioned before. However, as described
in Sec. 2.3, its one becomes an attack vector that should
be taken into account within a C-ITS.

The computing infrastructure supporting a C-ITS
is of paramount importance. It supports large-scale
C-ITS-related applications such as road safety, traffic
efficiency, multimodal commuting, smart parking, etc.
For time-critical applications, a hybrid computing
model using Cloud, Edge, and Fog paradigms [3,
39] for data analytics and knowledge discovery is
required (left-hand side of Fig. 3). Bringing the
computing resources closer to the “Edge” enables
faster processing and data collection and minimises
the network delays introduced by the several hops in
the backbone connectivity. Edge processing capabilities
are particularly important for Machine Learning
(ML)-based solutions, as different types and quantities
of machines can work together to accomplish specific
objectives. Secs 2.1 and 2.4 briefly touched upon the
attack surfaces related to the data plane and the
importance of concrete security solutions.

Collected data should be managed appropriately in
a C-ITS [11]. Data analysis or mining at the Edge can
be performed in different ways. Usually, long-term data
storage is handled by the Cloud plane. On the other
hand, data that help with time-critical applications
are stored in Edge/Fog nodes [9] that are designed
to be always ready to use (Fig. 3). The acquired
C-ITS data are usually processed by first inspecting
their correctness by reviewing the type of data,
error rectification, and data cleansing. The evaluated

6

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

V2I V2V

V2I

Internet/Cloud

Fog Area 1 Fog Area 2

Fog Area 3
Wired Connection

Fog Orchestrator
Service Engine

Access Controller

ITS
Applications

Scalable Data
Clasification

Decision
Making
Agent

Fog Processing Unit
Link from Cloud

IEEE 802.11p/bd/DSRC Coverage (Base Layer)

IEEE 802.11p/bd/DSRC
Road Side Unit

Sub-6GHz Base Station

V2I

V2I

V2V

Sub-6GHz Coverage (1st Enhancement Layer)

mmWave
Base Station

mmWave Coverage (2nd Enhancement Layer)

V2I

Traffic light status
notification

Notification of a road
side alert and LIDAR
3D scans are acquired

Notification of
emergency braking

because of a pedestrian

Digital Twins - Digital
Replicas of a C-ITS

Test Facilities - Physical
Replica of a C-ITS

Physical World
Digital World

Real-world C-ITS

Figure 3. General overview of the considered C-ITS model and the connection with CSCE. Physical and Digital C-ITS Replicas will
be provided within CSCE to enhance the cybersecurity and C-ITS operation.

data is then analysed by sophisticated algorithms,
either rule-based or ML-based. Inconsistencies during
processing are fixed, and amended data can be further
analysed to derive information from it. C-ITS data
transmission and analysis at the Fog offers several
advantages, these being:

• Low-latency services: Analysing data at the collection
source reduces the latency as the time needed to
transmit is minimised.

• Resource Management: Vehicles or pedestrians
(nodes) can join and leave the Fog plane at any
time. Therefore, a high-speed resource management
service will enable real-time network monitoring and
control.

• Bandwidth Management: Due to the reduced data
transmission, the available bandwidth can be better
utilised for other purposes.

• Location Awareness: Location services help monitor
and track the Fog nodes. This will enable the
distributed fog nodes to form a multicast group to
facilitate rapid decisions for C-ITS application.

The above could be pivotal in achieving a fully
functional C-ITS. However, as the above sections show,
a C-ITS is a very complex SoS with many moving
parts and attack vectors. Moving from theory to
practice and bringing C-ITSs and CAVs closer to the
real world requires rigorous cybersecurity testing and

well-established frameworks to ensure the solutions’
validity. Based on that, in the following sections, we
delve into the importance and requirements for cyber
test facilities – their architecture and the supporting
ecosystem – for enabling the protection of large vehicle
fleets and the future C-ITSs.

3. Related works

Research activities and industrial initiatives show
significant advancements in the context of CAVs
and C-ITS. Authors in [40] discussed the necessity
for testing and certification for autonomous vehicles
with a focus on cybersecurity and ML, highlighting
the importance of testing sensors, actuators, and
software running on CAVs. They also discuss the
importance of accreditation schemes, the creation
of vulnerability reporting databases, and how
public-private partnerships should standardise testing
regimes and processes. Real-world testbeds and
facilities like UTAC Millbrook-Culham2, ASSURED
CAV3 and Testregion DigiTrans4 already provide
facilities for testing novel CAV and C-ITS services.
Our work aims to provide a framework such that
facilities like the aforementioned can become more

2UTAC Millbrook Testbed: https://www.utac.com/
3ASSURED CAV: https://www.horiba-mira.com/assured-cav/
4DigiTrans: https://www.digitrans.expert/en/

7

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://www.utac.com/
https://www.horiba-mira.com/assured-cav/
https://www.digitrans.expert/en/

cybersecurity-aware, incorporating ways of testing and
evaluating the cybersecurity of the services developed.

Similar facilities and CSCEs have been proposed in
the past. An example is [41], where a cybersecurity
research facility is presented. This facility focuses
more broadly on general-purpose sensitive data
cybersecurity experiments. Their lessons learned
discuss the importance of disaster recovery, continuous
updates and improvement of the testing facilities and
proper management of participants and resources. The
team in [42] advocates the importance of nurturing
the cybersecurity workforce and presents a framework
to improve the skills of potential cybersecurity
actors. They highlight the importance of data-driven
cybersecurity and various tools and technologies
(e.g., cloud-native computing, containers, monitoring
and intrusion detection tools, etc.) necessary for
cybersecurity practitioners. Building upon the same
ideas, our work will focus on the requirements of
C-ITS-related test facilities, the technologies required
to provide cybersecurity testing functionality and how
the outcomes can be adopted in the real world.

Finally, existing works, e.g., [43–45] highlight the
necessary evolution in the automotive and related
standardisation landscape while providing ethics
guidelines and upcoming regulations. Other works [13]
focus on the challenges and threats faced by CAVs.
We extend both concepts by discussing additional
challenges originating from the real-world adoption of
the different technologies and frameworks, identifying
existing drawbacks in current standardisation
activities. Finally, we touch upon the challenges
arising from the operational requirements and the
resilience required for a real-world system.

4. CSCE and CTEF System Description
In the previous sections, we briefly described an
envisaged C-ITS and the key security objectives for that.
A CSCE should build on these principles and provide
the cybersecurity functionality required of a C-ITS. Our
envisaged CSCE and its corresponding sub-systems,
testing regimes, and relevant stakeholders ecosystem
are shown in Fig. 4. The governmental agencies in the
diagram are UK-based, but similar organisations are
found in all countries and can be part of a given CSCE.

4.1. CSCE and its Testing Facilities Requirements
Our envisaged CSCE should provide two main
functionalities. i.e., a testing, evaluation and
certification facility and a provision for live monitoring
and detecting threats in real-time within a C-ITS. The
design and proposed solutions should be replicable in
the real world with minor modifications. The testing
facilities should provide the tools, environments
and frameworks for investigating cybersecurity

vulnerabilities and threats within a sub-systemic,
systemic, or SoS fashion, either in physical or digital
infrastructures. This allows future C-ITS components
and CAV manufacturers to run experiments within
correctly set-up environments and test their proposed
systems for cybersecurity vulnerabilities.

From the above sections, we can identify several
requirements. The primary aim of the proposed CSCE
is to provide cybersecurity research, test and evaluation
services for C-ITSs in a scalable, adaptable, modular and
flexible way. To achieve this goal, the CSCE should
adhere to the following key requirements :

CR1 – Identification and validation: C-ITS-wide
cyber threats must be identified and evaluated for their
significance, likelihood and impact.

CR2 – Convergence of virtual and physical world:
Both physical (e.g., conducted on a test track in
an air-gapped scenario) and virtual (e.g., performed
employing simulations and Digital Twins [46]) must be
provided, with software and hardware testing support,
i.e.:

• In-vitro testing, i.e., “sand-boxed” virtual
environments to test C-ITS systems and
components.

• In-situ testing, i.e., testing C-ITS systems
interactions with each other and with cits related
road-side infrastructure.

CR3 – Integration of cybersecurity tools and
technologies: Various tools should be utilised to
satisfy the safety, security and availability of C-ITS
systems, e.g., tools for penetration testing activities
or cloud-native security should be supported and
provided.

CR4 – Maturing cybersecurity schemes: The
proposed cybersecurity mechanisms and the tools
developed should be matured within cybersecurity
incubators. The different components must align with
the C-ITS operational requirements, before integrated
into the main system.

CR5 – Automated content curation process:
Bidirectional communication channels should be
established that feed data and information from
the real world to the test facilities and continuous
integration mechanism for deploying the implemented
solutions.

CR6 – Continuous monitoring facilities: The
cybersecurity incidents must be effectively detected,
mitigated and prevented in real-time.

CR7 – Respond and recover mechanisms: Fallback
policies should be in place, so when an attack occurs,
to immediately begin recovery.

8

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

UK C-ITS Ecosystem

Cyber Security Centre of Excellence (CSCE)

Cyber Security Tes�ng and Evalua�on Facility (CTEF)

C-IT Systems
Manufacturers

So�ware

Hardware

University
and Research
Ins�tu�ons

Partnerships

In-Vitro Tes�ng
��Policies, binary code and

vulnerability scans
��I/O tes�ng and verifica�on
��Virtual machine threat detec�on

(e.g., with adversarial ML)

In-Situ Tes�ng
��Simulated CAV (SoS behaviour

analysis) with ITS digital twins
��Emulated CAV hardware tes�ng
��Sensor data integrity

CAV Technology
Implementa�on Tes�ng

��Ethical research hacking
��Detec�on and preven�on
��Confiden�ality, integrity and

availability vulnerabili�es
��New CAV system cer�fica�on

CAV incident
Repor�ng

and Analysis

In-Vivo (Real-Time) CAV
Monitoring

��Real-world
deployment of CAV
systems

��Monitoring of the
CAV systems
behaviour

��Test privacy and
opera�onal
requirements

Na�onal CAV
Systems

Vulnerability
Database

Na�onal CAV
Systems Firmware
Version Database

Impact of CAV
incident analysis

CAV ‘Bug bounty’ Program

UK Automo�ve Insurers

CAV
Opera�onal
Safety Test

Cer�fica�on
Centres

Zenzic Testbeds

UK Government Agencies

● National Cybersecurity Centre
(NCSC)

● National Protective Security
Authority (NPSA)

● Department of Transport
● Office of HARPS (proposed)

Figure 4. Proposed Cybersecurity Centre of Excellence (CSCE, green box) organisational and operational structure within the UK
Cooperative Intelligent Transportation System (C-ITS, black box). Within the CSCE, we propose a cybersecurity Testing and Evaluation
Facility (CTEF, blue box) to allow for online (i.e., cloud-based software containerisation of CAV systems and C-ITS infrastructure
emulators) testing. Live monitoring of CAVs operating in the UK combined with national CAV systems vulnerability and firmware version
databases allows for rapid responses to security-related breaches.

CR8 – Improved resilience: A C-ITS must be
operational even when affected by a cybersecurity event
or attack.

Following the requirements of the CSCE, the
supporting test facilities will be used as an “evaluation
and testing” platform in an isolated fashion so that
detection, mitigation and prevention mechanisms can
be tested without affecting a real-world system. The
following key requirements are recommended:

TR1 – Extensibility: All systems and subsystems
must be extensible to allow the addition and testing of
new security approaches, evaluation of new modules
and security prototypes. Breaking down the testing
into smaller manageable components makes it easier to
achieve a highly secured system.

TR2 – Distributed capabilities: Distributed
processing capabilities must be provided to ensure

scalable solutions and improve efficiency and
performance.

TR3 – Bidirectional Interaction with Intelligent
Agents: The testing platform should handle the training
data and be able to apply policies generated by
ML solutions. A set of good security policies and
practices should follow, e.g., regular checks, balances,
and reminders, confirming that a new security policy is
being enforced.

TR4 – Security-as-a-Service: The testing pipeline
must employ reconnaissance and penetration testing
capabilities as well as vulnerability detection
mechanisms in a Security-as-a-Service (SecaaS)
fashion. This provides the flexibility to test
different components dynamically and introduces
a softwarisation and virtualisation approach into the
test facilities.

9

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

TR5 – High Adaptability: The test infrastructure and
pipeline must be built on a core baseline but be highly
adaptable. The security level of one security domain can
be adjusted without affecting the security levels of other
domains or systems:

• The choice to conduct specific experiments that
use individual systems, or SoS, represent specific
architectures and work on different scenarios and
use cases.

• Similar process activities must be grouped at the
capability level. The capability level is used to assess
the risk exposure of assets and processes and specify
adequate and consistent security requirements.

• The testing platform must provide tools for threat
detection of common network vulnerabilities and
aggregated and systemic threats across large fleets
of vehicles or C-ITS components.

• The test framework should be easily reset to the
stable core functionality and be prepared for a
new set of experiments. Significant security risks
introduced during the experimentation of a system
should be easily reverted back to the state that was
proven to be more secure.

TR6 – External cooperation: The test facilities
must facilitate cooperation with the industry,
academia and government to maintain and improve
security standards. Using defined security domains
allows organisations to engage business partners in
determining the appropriate security requirements for
each cross-organisational information flow.

TR7 – Existing development practices: The test
facilities must utilise existing well-established
development practices but also allow collaborations
with R&D to ensure up-to-date testing and
state-of-the-art equipment and technologies are
always used.

4.2. Scope and Key Characteristics of CSCE
The envisaged CSCE should be able to address
the pressing concerns around the cyber threats
for C-ITSs and CAVs. It should address both the
technological risks as well as provide suggestions
for the socio-technical aspects of the surrounding
ecosystem (e.g., skills required, public engagement,
training on secure practices, etc.). Three different
entities will support the CSCE (Fig. 4):

1. Cybersecurity Test and Evaluation Facility
(CTEF): CTEF is a large and complex SoS based
on legacy and state-of-the-art technologies. Like all
industrial control systems, CTEF will have unique
performance, reliability and safety requirements.
CTEF should replicate with high fidelity systems,

services and capabilities of a C-ITS and provide the
tools for investigating cyber threats in an “in-vitro”
or “in-situ” fashion. These tools can be physical or
virtual implementations that duplicate the real-world
interactions between the different systems.

2. Cybersecure Real-world Intelligent Framework:
The knowledge acquired from the CTEF, should
be easily transferable to the real-world. Of course,
bidirectional interaction between the two entities is
paramount, as identified cyber-threats in the real world
should be replicated in CTEF and addressed with
novel mitigation strategies in an “in-vivo” fashion.
The real-time monitoring of systemic interactions can
enhance the detection and prevention of risks. This
framework should address traditional threats and
consider behavioural aspects of CAVs and C-ITSs. The
continuous operation of such a system, ensuring that
disruptions will not affect the available services, is one
of the key aspects that should be considered.

3. CSCE Ecosystem: The above physical and
virtual infrastructure solutions can address the
operational aspects of such a platform. However,
the surrounding ecosystem and an incident analysis
framework within that is critical. National C-ITS
systems’ vulnerability, firmware version databases and
bug bounty programs could provide the CSCE with
relevant tests and firmware version requirements to
ensure all components will be continuously monitored
and checked against a set of minimum requirements.
Finally, maturity models can ensure high-quality
solutions. Understanding the causes of the incident
and providing feedback to the test facilities will allow
fast prototyping and quick dissemination of solutions.
Therefore, our CSCE must be updated (through
maturity cycles) in how it operates and accurately
assesses future CAV systems.

The socio-technical aspects of CSCE should be
extended beyond technology, intertwining human,
organisational and technological facets. Addressing
cybercrime from other avenues (human-centric,
educational-centric, etc.) can reduce its effects. Apart
from the social benefits, this could also unlock new
revenue opportunities and added economic value, thus
making the business aspects part of the ecosystem.
The five socio-technical areas to be considered are as
follows:

• Human Factors: Enhancing cybersecurity awareness
is crucial. Training should focus on understanding
risks, recognising vulnerabilities, and adopting
protective best practices.

• Public Engagement: Trust in C-ITSs and CAVs is
vital. Open dialogues can address concerns, dispel
myths, and foster collective responsibility.

10
EAI Endorsed Transactions Preprint

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

• Organisational Dynamics: Organisations should
prioritise cybersecurity in strategies, policies, and
operations. Regular audits and feedback loops ensure
continuous improvement.

• Collaborative Frameworks: The complexity of
C-ITSs and CAVs demands cross-sector collaboration.
Shared initiatives can pool knowledge, resources,
and best practices.

• Regulatory and Policy Implications: Evolving
C-ITSs and CAV landscapes require adaptive
regulations. Policymakers should collaborate with
experts to develop robust, flexible rules prioritising
safety while encouraging innovation.

4.3. The Different Dimensions of C-ITS Cybersecurity
A holistic approach to cybersecurity, addressing both
human and technical dimensions, ensures a resilient
transportation ecosystem. For the remaining paper,
the above entities will be further described, focusing
primarily on the test facilities and their integration
with the real world. Within CSCE, and during the
evaluation and testing of the different subsystems,
different dimensions (layers) of cybersecurity should be
considered for both C-ITSs and fleets of CAVs. These
layers can be grouped as follows:

• Baseline Information Systems Risk: A CAV is
an information system that inherits the standard
cyber risks and issues associated with connected
information technologies.

• Domain-specific Risk: CAV systems provide
domain-specific functions and services, each
creating specialised attack surfaces that may affect
cybersecurity posture.

• Consequential Risk: As cyber-physical systems, the
operations of CAV platforms have consequences in
the physical world, and these must be reflected in the
assessment and appraisal of CAV systems.

• Emergent Risk: The autonomous component of these
platforms introduces risks relating to emergentism
– that the system may autonomously arrive at and
display behaviours not foreseen or intended by its
creators.

5. CSCE Architecture and System Design
Secs. 2.5 and 4.1 discussed the requirement for
a scalable, adaptable, modular, and extensible
architecture. One pertinent paradigm is the Open
Radio Access Network (O-RAN) architecture [47].
O-RAN is built on open interfaces and emphasises
its disaggregated and virtualised architecture. It
promotes cloud-native applications that are modular,

scalable, and easily upgradeable. We envision a
similar architecture built upon microservices operating
in a containerised cloud-native fashion. Such an
architecture can facilitate our system’s dynamic
optimisation and integration with multi-dimensional
communication planes. Moreover, the CTEF can
harness diverse and distributed multi-vendor
environments, ensuring the robustness and flexibility
of its cybersecurity mechanisms while still maintaining
interoperability across the different systems
and sub-systems [48]. A distributed design can
overcome bottlenecks, especially during high-demand
periods [49].

Overall, such an architecture will promote
rapidly deploying highly extensible solutions easily
transferable to the real world. This flexibility can
enable integrating emerging technologies such as
quantum computing, advanced AI algorithms, or
new cybersecurity tools and tests. By providing
finer-grained control over new features, we can speed
up the development of new cybersecurity policies in the
CTEF facilities, foster collaboration between research
organisations, and provide a robust framework for
research and innovation.

Two critical aspects of the system are its continuous
learning and improvement and the focus on open
standards and interoperability. Through real-time
monitoring and feedback loops, CSCE can continuously
learn from its operations, adapt to new threats, and
improve its defences, ensuring the system remains
robust and relevant. By adhering to open standards,
the CSCE ensures seamless integration with other
systems and provides a “common language” for various
engineers.

Working in a SecaaS fashion, the CSCE can provide
all the above-mentioned tools and services for
automation, self-management and scalability in an
as-a-service fashion. This will allow individuals and
corporations to test their solutions without substantial
capital outlays or complex initial implementations.
When deployed in the real world, the solutions
implemented can benefit from such an approach.
The elasticity of these approaches and the benefit
of short-lived virtualised platforms can reduce
the “window of opportunity” for attackers while
maintaining availability, fast response times, disaster
recovery and promoting vendor partnership and
collaborations.

Finally, our CTEF and CSCE will advocate for
Digital Twin implementations, allowing cybersecurity
solutions to be demonstrated using real-world data
in virtual environments. This ensures that developed
solutions will be directly applicable in the real world. A
high-level conceptual diagram of this architecture can
be seen in Fig. 3. The following sections will discuss the
requirements for the testing facilities, the technologies

11

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

that can facilitate the proposed CTEF and CSCE and
existing challenges.

6. Designing a CTEF
As explained earlier, the CTEF assesses the
cybersecurity of software and hardware C-ITS
components. It is essential to perform a comprehensive
analysis that includes both “in-vitro” and “in-situ”
testing to ensure fast sample analysis and improved
system performance. In the upcoming sections, we
will provide a detailed description of these two
testing categories along with their corresponding
requirements.

6.1. CTEF: In-vitro Testing and Analysis
In-vitro testing is an automated analysis of software
samples outside their system context. It can identify
malicious software through static and dynamic analysis
in isolated virtual environments [50]. In-vitro testing
can minimise the overhead and resource utilisation
of time-consuming penetration tests and systemic
behavioural analyses and serves as the entry point for
software samples to be tested in the CTEF or in parallel
with in-situ tests.

In-vitro testing should meet traditional IT malware
analysis requirements [51, 52]. The operational
requirements that a C-ITS introduces are not
considered at this stage since they are addressed
in the in-situ tests. However, in-vitro tests should
still provide efficient and scalable functionality to
accommodate many concurrent tests. Sec. 6.2 provides
the methodology for in-vitro testing, and Tab. 2
summarises the key functional requirements. More
specifically, we have:

VTR1 – Detection of known malware: Malicious
software is identified by evaluating specific instructions
and/or byte sequences against known vulnerability
databases. An efficient automated signature generation
method should be implemented, as described in [53],
to reduce the time required for static analysis, also
linked to a requirement for continuous integration
(Req. VTR7).

VTR2 – Detection of unknown malware: Zero-day
attacks, i.e., malware that exploits vulnerabilities not
known before and malware that transforms their
code to evade signature-based detection mechanisms,
must be detectable within CTEF, rendering traditional
signature-based malware detection tools as insufficient.
ML strategies could be employed to detect such
malicious behaviours [54]. Potential datasets for that
are NSL-KDD [55] and its extensions, consisting of 125k
samples and 41 features, EMBER [56], with more than
1M samples, and more. The detection capability can be

Table 2. Requirements for In-vitro testing and analysis.

Req. Requirement Description

VTR1 Must be able to detect existing malware
VTR2 Must be able to detect unknown malware
VTR3 Must be able to detect software

vulnerabilities
VTR4 Must consider and defend against attacks to

the detection mechanisms
VTR5 Must be scalable to allow concurrent testing

and analysis of multiple CAV software
samples

VTR6 Must enable an easy transition to a clear
state

VTR7 Must be updatable on the fly to incorporate
new cyber threat detection capabilities

VTR8 Must be isolated from the outside world to
avoid network contamination

VTR9 Must be able to provide multiple OS
environments for testing and analysis

VTR10 Must maintain a log of scanned software and
produce relevant reports

VTR11 Should allow a user to create an account and
test their software

VTR12 Software samples that are to be tested
should not be visible to anyone apart from
the user that submitted the software

based on detecting anomalies in the normal operation
of the virtual environment when the software sample is
executed in it (anomaly detection using unsupervised
learning) or on the similarities in the behaviour of the
software sample with the behaviour of known malware
(supervised learning).

VTR3 – Software vulnerabilities detection: Bad
coding practices and security holes in the software can
result in vulnerabilities. Other malicious software and
malevolent actors can exploit these code vulnerabilities.
In the CTEF, vulnerability detection will be realised in
two ways:

• ML techniques can be used to automate the
detection of vulnerabilities in the source code [57].
The existence of a large open source codebase
favours the training of ML (e.g., multiclass
classification of source code vulnerabilities using
deep learning or Recurrent Neural Networks when
only binaries are available).

• Where the source code is unavailable, ML
techniques will be used to automate the detection of
vulnerabilities in the binary code [58].

12

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

VTR4 – Defence against adversarial ML: ML can
detect unknown malware and vulnerabilities, but it
is vulnerable to attacks such as input manipulation,
model attack and model theft that aim to force
deliberate misclassification of inputs [59]. CTEF must
consider defence strategies against these attacks and
also integrate new solutions into the implemented
pipelines, leveraging its extensibility and scalability
(Req. VTR5).

VTR5 – Scalability: In-vitro testing will use
cloud-native services for scalability and concurrent
testing. Tests will run in ephemeral and isolated
environments (e.g., in the cloud or containers) [49], as
presented in Figure 5. The environments must reset to
their initial state after each test.

VTR6 – Easy restoration to a clean state: Similar
to Req. VTR5, virtualised environments will enable
easy reset and restoration of the system to a clean
state after the end of a test [49]. This, in conjunction
with multiple virtual environments, will allow for more
efficient operation, improving the overall performance
of the CTEF.

VTR7 – Update on the fly: In-vitro tests must
stay updated with new cyber threats. ML-based
detection models must be regularly retrained to
avoid concept drift over time [25] and improve their
detection capability. Additionally, adopting multiple
well-supported open-source signature-based malware
detection tools will further improve the detection
effectiveness. Finally, virtualised environments can
enable real-time updates and integration of new
detection capabilities.

VTR8 – Avoid network contamination: Using
virtualised testing environments will enable the
isolation of the in-vitro tests from the outside world,
thus avoiding network contamination. The virtual
environments must be appropriately set up to avoid
external network connections.

VTR9 – Multiple OSs: Similar to Req. VTR8, the
use of virtualised environments will enable the running
of a variety of operating systems, which in turn will
allow software execution and behaviour analysis in the
appropriate set-up.

VTR10 – Logging and reporting: Each test in the
in-vitro environment will be logged along with the test
output in a centralised database. The database will keep
a record of all users and software tested. The CTEF
must follow traditional IT systems-based information
risk management and privacy policies and regulations
(e.g. ISO 27001 [60], GDPR, etc.) to ensure appropriate
data privacy and protection.

VTR11 - User interaction: The CTEF should provide
a user interface to allow users to upload their
software for testing. Similarly to Req. VTR10, the user
interfaces and backend implementations should adhere
to best practices and standards for IT systems-based
information risk management (e.g. ISO 27001 [60],
GDPR, etc.).

VTR12 – Manufacturers Confidentiality: To ensure
manufacturers’ confidentiality, software samples for
testing will only be accessible to the submitting user.
Virtual environments used in testing must not be
accessible by other users and will be reset and restored
after each test. Data stored in the CTEF must be visible
only to the user whose software generated the data.

6.2. High-Level Design for In-vitro tests
The in-vitro testing is broken down into four
subtests: static analysis, dynamic (behavioural)
analysis, vulnerability detection in the source code
and vulnerability detection in the binary code as shown
in Fig. 6. Each subtest will be executed in an isolated
virtual environment addressing the Reqs. VTR5
to VTR9.

Scheduling optimisation can be performed by a
“hypervisor/orchestrator” -(Fig. 6). After submitting
the software samples to be tested, the hypervisor can
determine the number of virtual environments needed
and the scheduling of subtests. We expect the number
of virtual environments needed to be dynamically
changed so that software samples that fail one of
the subtests do not consume system resources. The
complexity and performance of each subtest will also
be considered in the scheduling process. For instance,
static analysis is much faster and resource-light than
dynamic analysis; as such, in a single sample analysis
case, static analysis should always precede dynamic
analysis. Resource allocation/deallocation and subtask
scheduling will be automated to further improve the
testing system’s performance.

So, based on the above, we envision an in-vitro
environment that will consist of four components
(Fig. 7):

1. the user interface allowing user registration and
software submission to the system in a secure way,

2. the CTEF management and configuration system
providing the appropriate APIs to run the desired
tests and user management, test configuration and
logging capabilities,

3. the hypervisor for spawning virtual tests and
optimise the use of resources in a cloud-native
manner, and finally,

4. the actual tests that will be run in the spawned
virtual environments.

13

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

Software
execution

environments

Data collection

Cloud-based dynamic analysis system

ML-based
behavior
analysis

Software
sample

ML-based source
code vulnerability

detection

Binary codeSource code

ML-based binary
code vulnerability

detection

Cloud-based vulnerability detection system

Signature
generation

Signature
detection

Cloud-based static analysis system

Figure 5. Example of an in-vitro’s cloud-based software analysis system.

Figure 6. In-vitro CTEF testing and optimisation regime.

Figure 7. In-vitro high-level architecture diagram.

6.3. CTEF: In-situ Testing and Analysis
In-vitro testing can detect malicious software and
vulnerabilities but does not account for the interaction
between CAV and C-ITS infrastructure. In-situ tests
allow CAV systems to interact with virtual CAVs and
C-ITS-related environments, providing a more realistic
evaluation of software and hardware components. For
example, a malicious CAV may aim to brake suddenly
at a busy intersection to block or collide with other
vehicles. While triggering the CAV braking control
sequence may not seem suspicious or malicious on its

Figure 8. Proposed in-situ testing scheme.

own, the context of where the CAV stopped, i.e., in
the middle of a busy intersection, suggests malicious
behaviour. In-situ testing aims to fill this gap by
providing realistic C-ITS environments for testing and
evaluation.

Rigorous, transparent, and replicable cybersecurity
in-situ testing of new hardware and software will occur
in simulated C-ITS environments in C-ITS testbeds.
Testing environments will evaluate the security of new
technologies and analyse their impact on the system’s
operations and performance. These tests will not
replace traditional penetration testing techniques. On
the contrary, in-situ tests will be operated as automated
standalone tests in conjunction with penetration testers
while emulating real-world C-ITS scenarios (Fig. 8).
In such a setup, penetration tests will investigate

14
EAI Endorsed Transactions Preprint

Table 3. Requirements for In-situ testing and analysis.

Req. Requirement Description

ST1 Must be run in a configurable C-ITS test
environment

ST2 Must support multiple C-ITS configurations
ST3 Must support simulation of processes and

devices
ST4 Must support all data flows identified in

C-ITS
ST5 Must include a diverse range of devices and

protocols
ST6 Must produce performance metrics based on

the C-ITS operational requirements
ST7 Must detect vulnerabilities by performing

penetration tests
ST8 Must run a series of cyber attack scenarios
ST9 Must provide tools to perform penetration

tests
ST10 Must detect links between cyber-attack

scenarios and misuse scenarios
ST11 Must provide data logging capability for all

data flows
ST12 Must provide the tools to perform behaviour

analysis for threat detection
ST13 Must enable an easy transition to the

initial/clean state
ST14 Must keep the complexity of experimental

infrastructure at check
ST15 Must be designed with scalability and

flexibility in mind in order to be transferable
to the real world

the V2X data flows within an C-ITS. The collected
data will be analysed using ML-based approaches to
detect potential systemic malicious behaviours. Sec. 6.4
provides the methodology for in-vitro testing and
analysis, and Tab. 3 summarises its requirements. The
requirements are tailored to the needs of a C-ITS
and account for the lessons learned from previous
cyber-security testbeds [61]. Briefly, we have:

ST1 – Configurable C-ITS test environment:
In-situ tests should run in simulated/emulated
C-ITS environments, either digital (a computerised
simulation of a C-ITS) or real-world (e.g., Zenzic’s
testbeds5). In-situ testing could be based on the
packet-level vehicular simulation frameworks such
as Veins [62] integrated with traffic simulators such
as SUMO [63]. This will allow for the monitoring

5Zenzic C-ITS Testing in the UK: https://zenzic.io/testbed-uk/

Behaviour analysis, AI
Penetration testing tools

etc.

Data aggregation and analysis

Test subject (infrastructure component,
CAV, software etc.)

Emulated/ Simulated C-ITS
(digital world)

C-ITS Testbed
(real world)

Figure 9. In-situ high-level interconnections.

and analysis of communication patterns and the
detection of network anomalies. CAV or C-ITS related
hardware and software could be “plugged in” to
the simulated environment and interact with digital
entities (simulated vehicles and/or infrastructure) at
the network level (Fig. 9).

ST2 – Support multiple C-ITS configurations: The
use of a digitally simulated C-ITS environment will
enable the deployment of a variety of different
scenarios with different system configurations. These
configurations must align with the requirements of
real-world C-ITS testbeds to ensure rapid development,
testing and deployment.

ST3 – Simulation of devices or processes: The
simulated C-ITS environment can enable the simulation
of devices and processes and create more realistic and
complex scenarios. Exposing various APIs can enable
an easier connection between the tested software and
the simulation framework.

ST4 – Support all data flows in C-ITS: To better
mimic the real world, the simulator/emulator used
must support all data flows identified in a C-ITS (as
described in Secs. 2.1 and 2.2 and shown in Fig. 1).

ST5 – Diverse devices and protocols: The C-ITS and
vehicular communication protocols (e.g., IEEE ITS-G5,
3GPP LTE, etc.) should be supported by the simulation
frameworks, implementing the different standards.
Additionally, cybersecurity tools used to evaluate
the security of the software/hardware undergoing
testing must be compatible with these communication
protocols.

ST6 – Performance metrics: A baseline profile
should represent the system’s behaviour without adding
other software or hardware. This profile, generated
before any modification, can be compared to the
network performance achieved (jitter, throughput, etc.)

15

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

after adding the new software or hardware to the testing
environment.

ST7 – Vulnerabilities detection/Penetration
testing: Penetration tests can provide insight into
the likelihood of a threat occurring and how successful
a cyber attack could be6. Such capabilities must be
incorporated in in-situ testing. Following the guidelines
on cybersecurity provided by the US Department of
Transportation [64], the scope of the penetration tests
should include security policies, devices, applications,
networks, access controls, communications and
configurations that can compromise the C-ITS. In-situ
penetration tests will consider the following:

• Infrastructure: Includes field devices such as
traffic sensors, traffic control and signalling, public
messaging etc. and the wireless and wired networks
that support them.

• Traveller: Encompasses the devices used by the
traveller to access C-ITS services (e.g. traffic or
emergency notifications).

• CAVs: Software and hardware found in CAVs and
communication with other entities in a C-ITS.

• Communications: Includes the communication
components of the C-ITS. These include various
wireless technologies such as Wi-Fi, WiMAX,
mmWAVE, cellular networking, etc.

Finally, tests should be provided on all categories, i.e.,
black, grey and white box testing [65]. These tests
should be structured based on the attack scenarios we
describe in Req. ST8 and cover all phases of a cyber
attack, as described by the Cyber Kill Chain Model [66].

ST8 – Cyber attack scenarios: Penetration tests must
be structured on a series of cyber attack scenarios
tailored to C-ITS, as discussed in [26, 67]. The selection
of the attack scenarios is controlled by the penetration
tester, depending on the component to be tested. Attack
scenarios can be categorised into Physical, Wireless,
Network and Vehicular Ad-hoc Networks (VANETs).
Tab. 4 summarises the attack scenarios, excluding
organisation attacks, against components in a C-ITS.
More details about these attacks can be found in [27,
28].

ST9 – Penetration testing tools: To enable the
execution of the attack scenarios described in Req. ST8,
in-situ will also provide the appropriate penetration
testing tools described by the Penetration Testing
Execution Standard [68]. The testing tools will be
integrated into a penetration testing suite and executed

6NCSC penetration guide for testing: https://www.ncsc.gov.uk/
guidance/penetration-testing

in a cloud-native-based approach inside a virtualised
environment. Tools must be compatible with all
technologies and communication protocols in C-ITS.

ST10 – Link cyber attacks to misuse scenarios: To
allow for better threat analysis, in-situ testing will link
the attack scenarios presented in Tab. 4.

ST11 – Data flow collection and storage: To enable
better analysis and aid for research and development,
all data flows must be stored anonymously and securely.
Furthermore, the tests and actions should be logged
and aligned with the stored data. Data stored can aid
in researching and developing new cybersecurity tools
and testing methods.

ST12 – ML-based threat detection: Appropriate
ML-based threat detection algorithms should be used to
detect abnormal behaviour within the simulated C-ITS
environment. Threat detection must be performed
before and after penetration tests to ensure the
detection of malicious changes in the system that
exploit vulnerabilities. This will allow for the detection
of malicious hardware/software as well as vulnerability
exploitation, as highlighted in Fig. 10.

ST13 – Easy transition to initial state: Virtualised
environment must return to an initial state after
testing. By doing so, we can ensure that controlled
environments are always used for experimentation.

ST14 – Managing the complexity: A digital network
management system should be deployed to oversee the
operation of the CTEF as tests are being carried out.
The management system should be responsible for the
following operations:

• Register new tests.

• Allow the configuration of a new C-ITS testing
environment (in case of a digital simulation) or
connect to real-world C-ITSs testing environments.

• Spawn new C-ITS simulation environments (in case
of a digital simulation). The tested SW/HW will be
“plugged ” into the simulation environment.

• Capture, store, and visualise all generated data
within the C-ITS (digital or real-world) testing
environment. Present system performance metrics.

• Analyse the generated data using cloud-based
ML-driven cybersecurity tools (aligns with
Req. ST12).

• Initiate cloud-based penetration testing platform to
be used by the facility’s penetration testers (aligns
with Reqs. ST7, ST8 and ST9).

• Log executed tests and results.

• Update the data analysis tools and the penetration
testing platform to address new threat vectors.

16

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

Table 4. Cyber attacks against C-ITS.

Attack Types Attacks

Physical Attacks
(attacks deployed by
having physical
access to the
component to be
tested)

• Physically connecting to exposed ports, e.g., USB, serial, etc.
• Using brute force or guessing credentials on a device
• Sniffing network traffic between a device and the backend
• Scanning the secured/closed network to discover the topology
• Deleting files on the compromised C-ITS device/system
• Dumping firmware to recover credentials and configuration
• MitM attacks using exposed wires/cables to intercept data
• Physically tamper with a device to steal/compromise data, modifying a device,
etc.
• Connecting a removable storage device loaded with malware to install
• Sending improper commands to the controller and backend servers
• MitM attack communications and sending false data to backend servers
• Pivoting a C-ITS device as a trusted entry point into the corporate network
• Exploiting vulnerabilities in software, hardware, protocols, OS, etc.

Wireless Attacks
(attacks deployed
against or/and via
wireless
communications)

• Spoofing V2V, V2I, and I2I messages broadcast to traffic and the rest of the C-ITS
ecosystem
• Sniffing wireless transmissions, e.g., using the car’s Wi-Fi
• Remotely transmitting and installing malicious firmware
• Electronic jamming of wireless transmissions to disrupt operations
• MitM attack with wireless transmission to intercept and/or modify data
• Exploiting vulnerabilities in software, hardware, protocols, OS, etc.
• Using vehicle Wi-Fi as an entry point into the controller area network (CAN) bus
and then to the on-board diagnostics (OBD), telematics control unit (TCU), and
in-vehicle infotainment (IVI)
• The remote hijacking of vehicle controls via compromised CAN bus
• Installing malicious third-party apps in a car’s infotainment system
• Attacking via a malicious app installed on a phone connected to the car’s Wi-Fi
• Electronic jamming of vehicle’s safety systems, e.g., radar, ultrasonic sensors, etc.

Network Attacks
(attacks that take
advantage of the
connection of C-ITS
components to the
Internet
(Internet-exposed
C-ITS systems)

• Identifying and abusing device misconfigurations
• Exploiting vulnerabilities in legacy software and hardware
• Installing malware/spyware on systems
• Uploading and installing malicious firmware
• Launching DDoS attacks on internet exposed C-ITS infrastructure and backend
servers
• Exploiting vulnerabilities in software, hardware, protocols, OS, etc.
• Credential brute-forcing and abusing weak authentication mechanisms
• SQL injection attacks
• Cross-site scripting (XSS) attacks
• Session hijacking attacks
• DNS spoofing and hijacking attacks
• Pass the Hash attacks
• Pass the Ticket attacks (Kerberos)
• Sending improper commands to the controller and backend servers
• Pivoting an ITS device as a trusted entry point into the corporate network

Attacks against
VANETs (attacks
exploiting Vehicular
Ad Hoc Networks)

• Sybil
• DDoS
• Blackhole
• Wormhole
• False information
• Replay
• Passive eavesdropping

17

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

Figure 10. In-situ C-ITS threat detection.

• Terminate running tests.

CTEF must follow traditional IT systems-based
information risk management and privacy policies
and regulations (e.g. ISO 27001 [60], GDPR, etc.) to
ensure user data privacy and cyber protection. More
information is provided in Sec. 2.4.

ST15 – Transferability to the real world: In-situ
tests and solutions must be designed with scalability
and flexibility in mind. This allows easy integration
into the real world. The adoption of a SecaaS
approach, along with the use of simulated C-ITS
environments, satisfy the two requirements. Using
a single management network to which all tools
and testing environments are connected favours the
extensibility.

6.4. High-Level Design for In-situ tests
In-situ CTEF is broken down into five stages as
presented in Fig. 11. This includes the Management
System, the Digital C-ITS simulation, the Real-world
C-ITS testbed, the ML-driven data analysis tools and
the penetration testing platform.

The data analysis tools and penetration testing
platform will run cloud-natively. Penetration testers can
use the platform to run the attack scenarios described
in Req. ST8. The penetration testing platform can be
implemented independently of the other components.
The ML data analysis tools depend on data from
the digital and real-world C-ITS simulations. ML
algorithms will be trained with simulator data and then
improved with real-world data.

The C-ITS simulation environment can be
cloud-based or locally implemented. Cloud-based
simulations offer flexibility but add latency. Local
implementation reduces latency and favours
flexibility and scalability while better representing
a C-ITS environment. The management network
connects SecaaS, testing environments, and the CTEF
Management System. Real-world testbeds will also be
used, and existing ones will be adapted to grant SecaaS
platforms access to data planes.

Figure 11. In-situ high-level architecture diagram.

7. Technical & Functional Specification
This section describes the technologies that will provide
CTEF with the modularity, extensibility, scalability
and robustness required. We align each technology’s
benefits with the requirements described in Sec. 4.1.
As known, each state-of-the-art technology solves many
issues but also brings new challenges, so in the
following sections, we will delve into the cybersecurity
challenges that need to be addressed for all the
presented technologies.

7.1. Microservices Architecture in Cybersecurity
A microservice architecture [69] is a set of services
loosely coupled to implement an application. These
services provide finer-grained control over an entire
application that operates as a whole. Microservices are
rapidly gaining popularity in the System Development
Life Cycle (SDLC) community as they facilitate
continuous delivery for larger applications and more
straightforward adaptation when the requirements are
updated. The benefits with regards to cybersecurity and
CSCE are summarised as follows:

• Granular Security Controls: As each microservice
handles a specific function (e.g., TLS certificate
dissemination, encryption of persistent data, etc.),
security measures can be applied with more
precision. This granularity facilitates independent
scaling within a SoS to meet varying security
demands and counteract specific threats (aligns with
Reqs. CR3, CR8, TR1, and TR2).

• Diverse Defense Mechanisms: The flexibility of
microservices allows each service to be developed
using different languages or frameworks. This
diversity makes it harder for attackers to exploit
a systemic vulnerability, as each service could
potentially present a unique defensive profile
(aligns with Reqs. CR3, and TR1).

• Isolated Incident Management: With modular
design, breaches or vulnerabilities in one service

18

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

do not necessarily compromise others. Isolation
enables efficient troubleshooting and targeted fixes,
enhancing the robustness of the overall system.
Testing processes are streamlined since issues can
be narrowed down quickly (aligns with Reqs. CR1
and TR1).

• Secure Continuous Delivery: Implementing
security measures in microservices ensures that
changes across the application’s lifecycle are
introduced without compromising security. When
cross-functional teams, including developers,
operations, and testing teams, focus on a single
service, integrating security measures becomes an
intrinsic part of the delivery process (aligns with
Reqs. CR5, CR6, TR6, and TR7).

• Proactive Threat Detection: Continuous and robust
monitoring ensures real-time oversight of the
security landscape. In case of security anomalies
or a service malfunction, predefined mitigation
strategies can immediately spring into action, be
it to restart a compromised service or initiate
countermeasures against potential threats (aligns
with Req. CR6).

7.2. Cloud-native Architectures for Cybersecurity
A cloud-native infrastructure serves as the backbone
to support the microservices approach vital for
use-cases like C-ITS and Smart Cities [70]. This
approach is widespread in many Smart City, Robotics,
and Infrastructure projects (e.g., as in [71, 72]) and
aligns with the key concepts for future C-ITSs [3].
Cloud-native architecture harnesses the inherent
capabilities of cloud computing to enhance the
security and efficiency of systems. Key benefits include
automation of microservices, horizontal and vertical
scaling, and resilience. This enables easier management
and operations of complex microservices-based
systems [48].

Smart Cities and C-ITSs are both inherently exposed
to cyber threats due to their wide digital footprint. A
cloud-native approach offers:

• Secure Automated Deployment: Cloud-native
ensures that deployment and management of
numerous microservices are automated, reducing
human error and potential security vulnerabilities
(aligns with Reqs.TR1 andTR5).

• Dynamic Scaling: As systems experience varying
demand, cloud-native offers adaptive scaling
without compromising security standards (aligns
with Req.TR1).

• Resilience: By leveraging distributed architectures,
resilience is assured even in the face of concentrated
cyber attacks (aligns with Req. CR8).

• Managed Security Services: Cloud-native
encourages the use of managed cloud services,
like secure databases, encrypted messaging, and
robust storage solutions, enhancing the security
ecosystem (aligns with Req. TR2).

This architectural advantage ensures that the CTEF
and its subsystems remain agile, responsive, and secure
against evolving threats. Cloud-native infrastructure
becomes pivotal when meeting the SecaaS specifications
mentioned in TR4. By integrating Software-as-a-Service
(SaaS) principles, security services are not only
provisioned on-demand but also fortified and elastic.
Overall, a well-designed cloud-native architecture will
provide the foundation for CTEF and the extensibility
and adaptability required for such a system.

7.3. Containerisation of Software and Orchestration
Containers are not just resource-efficient alternatives to
traditional virtual machines but also enhance security
by isolating application processes. Containerisation
Software (e.g., Docker7, LXC8, etc.) are cloud-native
ecosystems that encapsulate applications in
containerised environments, abstracting them from
potential vulnerabilities of the underlying machinery.
They are beneficial for the following reasons:

• Scalability: Containers facilitate rapid, secure
scaling from testing to deployment, ensuring no
compromised components scale along (aligns with
Req. TR1).

• Resilient: The inherent resilience of containers
ensures that potential breaches do not persist, as
containers can self-recover, minimising exposure
(aligns with Req. CR8).

• Distributed: Their distributed nature not only aids in
resource management but also decentralises potential
attack vectors, reducing single points of failure
(aligns with Req. TR2).

• Portability: Enables the application to run on various
locations, i.e., on-premises, in a public cloud, or in
a private cloud. Its independence from the host OS
minimises the exposure to potential vulnerabilities
there (aligns with Req. CR3).

For future C-ITS, a container orchestration layer
that emphasises security is crucial [73]. Container
orchestration is used to manage the lifecycle of
containers, especially in large, dynamic environments.

7Docker: Platform-as-a-service for OS-level virtualisation: https://
www.docker.com/
8LXC: Userspace interface for Linux Kernels: https://

linuxcontainers.org/lxc/

19

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://www.docker.com/
https://www.docker.com/
https://linuxcontainers.org/lxc/
https://linuxcontainers.org/lxc/

Container orchestration can be used to control and
automate many tasks, such as:

• Provisioning and deployment of containers
(Req. CR3).

• Redundancy and availability of containers
(Req. CR8).

• Scaling up or removing containers to spread
application load evenly across host infrastructure

• Moving and rescheduling containers from one host
to another. This ensures high availability of the
services even when one or many hosts are offline or
malfunctioning (Req. TR5).

• External exposure of services running in a container
with the outside world (Reqs. CR3 and TR6).

• Load balancing and service discovery between
containers. This can help find the available services
within the virtual network (Req. TR5).

• Monitoring the health of the containerised
applications and the host infrastructure (Req. CR3).

Such a flexible architecture can significantly benefit
the massive growth of heterogeneous devices connected
to such networks. The most popular tool for container
orchestration currently is Kubernetes9. Kubernetes is an
open-source production-grade container-orchestration
system for automating application deployment, scaling,
and management.

The benefits of container orchestration have
been investigated in various Smart City and C-ITS
deployments, e.g., in [74, 75]. These works show
that benefits are related to these environments’
delay-sensitive and data-intensive services. These
requirements are crucial for such systems. Using
computing resources closer to the end nodes (i.e., at
the Edge or the Fog) can reduce overall end-to-end
delay. Such an approach was followed in [76]. Authors
in this work designed a network-aware scheduling
approach for container-based applications in Smart
City deployment. Their approach builds on Kubernetes,
enhancing the default scheduling mechanism available.

7.4. Serverless and Functions-as-a-Service
Serverless computing and Function-as-a-Service (FaaS)
are emerging cloud architecture patterns that can
provide significant cybersecurity benefits for CAVs
and C-ITSs. The idea behind serverless is to “focus
on the application, not the infrastructure”. In a
serverless model, applications run in short-lived,

9Kubernetes: Production-grade container orchestration: https://

kubernetes.io/

stateless containers triggered by specific events and
fully managed by the cloud provider [77]. Resources are
allocated dynamically and “on-demand”. This contrasts
traditional servers and virtual machines that run
continuously regardless of utilisation.

For intelligent transportation systems, a serverless
approach reduces the attack surface in several key ways:

• Ephemeral function containers disappear
after execution, minimising the “window of
opportunity” for compromises (aligns with
Req. CR8).

• Automated scaling removes resource
management tasks vulnerable to misconfiguration
(aligns with Req. CR7)

• Stateless functions have no data at rest to exploit
(aligns with Reqs. CR8 and TR4).

• Granular access controls can be applied per
function (aligns with Req. CR1).

Additionally, FaaS capabilities allow transportation
services to scale elastically on demand. This is critical
for maintaining QoS during unexpected traffic spikes or
DDoS attacks. While an initial request may take longer
to be handled than an application hosting platform,
caching may enable subsequent requests to be handled
within milliseconds.

By leveraging serverless and FaaS, C-ITS,
cybersecurity researchers and engineers can focus
on developing discrete functions that can be scaled,
updated, and secured independently. This flexible
architecture aligns well with the dynamic nature
of transportation systems. When combined with
event-driven scaling, serverless allows C-ITSs to be
resilient and adaptive to evolving demands and threats.

8. In-vivo Monitoring and Protection
The CTEF offers a comprehensive cybersecurity
analysis for C-ITS components in isolated settings,
but real-world C-ITS infrastructure protection is vital.
CTEF is constructed to allow its tools to integrate
seamlessly with real-world C-ITS systems. All the
technologies described in Sec. 7 can facilitate this
integration and swiftly adapt new cybersecurity
measures and ML solutions, ensuring minimal
transition time for actual C-ITS systems. Furthermore,
adopting maturity models ensures the selection and
integration of high-quality solutions, reducing the risk
of potential damage from faulty software or hardware.
Incorporating “Digital Twins” [46] further boosts the
quality of solutions, ensuring the security, resilience,
interoperability, and other fundamental requirements
of a C-ITS. These tools also offer insights into the
system’s capabilities and help mitigate potential risks

20

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://kubernetes.io/
https://kubernetes.io/

or adverse outcomes. The following sections describe
how CTEF tools can be used in the real-world setup.

8.1. Maturing Cybersecurity Tools
In conjunction with its operation as a testing and
evaluation facility, CTEF can also provide its services
(testing environments and SecaaS platforms) for the
development of cybersecurity incubators to perform
research, development and maturity of new C-ITS
cybersecurity tools and algorithms (aligns with
Req. CR4). Starting with risk assessment frameworks
(like ISO 27001 [60]), the risks identified can be
mitigated, leading to mature, real-world-ready
solutions.

The maturity readiness should be considered
for the different tools and frameworks incubated.
Well-known frameworks could be used for that like
Capability Maturity Model Integration (CMMI)10,
or the Cybersecurity Capability Maturity Model
(C2M2)11. Internal frameworks could also be developed
that better align with C-ITS organisations and systems.
For example, authors in [78] describe a maturity model
that can evaluate the performance of an organisation in
a continuous and level-based way. The works [79, 80]
provide a good foundation for existing (or the lack
of) end-to-end cybersecurity maturity assessment
frameworks and ways forward to extend this area.

Using virtualised cloud-based cybersecurity
platforms and simulated C-ITS environments allows
easier deployment of cybersecurity testbeds where new
tools and techniques can be developed and tested. The
new tools will be matured within CTEF’s cybersecurity
incubators to verify that they operate in accordance
with the C-ITS operational requirements, as described
in the in-situ testing and analysis of CTEF, before
integrated into CTEF’s main SecaaS platform.

8.2. Cybersecurity of the Real-world Infrastructure
Both the in-vitro and the in-situ testing and evaluation
tools and services that compose the CTEF will follow
a SaaS approach; thereby, they will provide the
scalability and flexibility needed to be applied to
larger systems such as a real-world C-ITS. Furthermore,
since CTEF tools will operate with C-ITS’s operational
requirements in mind (e.g., protocols, data flows,
delays, etc.), they can be easily integrated into the real
world. The only difference between CTEF and the real
world, apart from the size of the system, is the need
for continuous monitoring and security evaluation in a

10Capability Maturity Model Integration (CMMI): https://www.

isaca.org/enterprise/performance-improvement-solutions
11Capability Maturity Model (C2M2) https://www.energy.gov/

ceser/cybersecurity-capability-maturity-model-c2m2

Figure 12. Cybersecurity of the real-world C-ITS infrastructure.

C-ITS environment due to the highly dynamic nature
of the system and the ever-changing threat landscape
(aligns with Reqs. CR5 and CR5).

For that purpose, localised Security Information
and Event Management (SIEM) systems must be
overlooking the real-world C-ITS, collaborating with
localised CTEF-like implementations in a distributed
manner. Each SIEM will inform a localised Security
Orchestration, Automation and Response (SOAR)
system responsible for triaging the data and responding
to threats by taking remediation steps (aligns with
Req. CR5 and CR7). To allow organisation-wide
strategy-driven decision-making, a strategic SOAR will
aggregate information from local SOARs for monitoring
purposes and also inform the organisation’s strategy
back to the local SOAR. An example of such an
approach can be found in [81], where a SOAR
dynamically deploys behavioural honeypots to enhance
network intrusion detection and security measures.
The above approaches can ensure that tools and
strategies are implemented under a comprehensive risk
management strategy (as discussed in [82]).

Fig. 12 illustrates our view of the cyber protection
of real-world C-ITSs. In conjunction with the proposed
CTEF, they will deliver holistic and continuous
cybersecurity to C-ITS in a distributed, cloud-based
manner. This approach will enable the use of the CTEF
testing and evaluation tools outside CTEF, extending
their exploitability.

8.3. Digital Twins and Digital Network Oracles
Sec. 6.3 discussed the importance of reconfigurable
C-ITS test environments, the importance of the data,
and the logging/measuring capabilities that should
be incorporated in CSCE. As it is evident, evaluating
potential solutions in the real world could be very
dangerous and raise privacy concerns. Therefore, the
alternative solution is using “Digital Twins” [46]. The
term describes a virtual simulation of the physical
world and assets – whether it is a vehicle, the road

21

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://www.isaca.org/enterprise/performance-improvement-solutions
https://www.isaca.org/enterprise/performance-improvement-solutions
https://www.energy.gov/ceser/cybersecurity-capability-maturity-model-c2m2
https://www.energy.gov/ceser/cybersecurity-capability-maturity-model-c2m2

infrastructure, or just a street of a major city (aligns
with Req. CR2).

Through data and feedback from both simulations
and the real world, a Digital Twin can develop
autonomy, learn from and reason from its environment.
A Digital Twin is a “digital living simulation” that
brings all the data and models together, attempts to
replicate salient features of the real world, and updates
itself from multiple sources to represent its physical
counterpart. There are already various attempts in the
literature to capture different aspects of a C-ITS, such
as [46] that describes a reference information sharing
model, [83] that presents a lightweight traffic situation
awareness Digital Twins, etc.

Recently, the concept of “Digital Network Oracles”,
i.e., an augmented “Digital Twin”, was introduced [84].
The added capability refers to a particular architecture,
which allows for the Digital Twin to be queried
sequentially, to which it responds with the state of
the “virtual world”. With such capabilities, the Digital
Twin can train iterative learning (e.g., Reinforcement
learning) controllers for inferential and prediction
tasks.

A Digital Network Oracle is a virtual representation
of physical assets in Cyber-Physical Production Systems
(CPPSs) and can comprise several Digital Twins.
If a Digital Twin is equipped with the following
four characteristics: synchronisation with the physical
assets, active data acquisition, the ability to simulate,
and sequential bidirectional interaction with intelligent
agents, the definition of this replica is transformed into
a Digital Network Oracle. An oracle deployed in CSCE
should have the following features:

• Automated detection of changes in scenarios in the
real world and dealing with missing information in
the digital domain.

• Automated detection of interdisciplinary
dependencies and consistency checking of
mechanics, electrics and software domain changes.

• Automated adaptation and changes in the models of
the Digital Twin.

Moreover, an important feature required is the
cross-domain (or cross-asset) synchronisation.
Systems or sub-systems simulated in a Digital
Twin do not adhere to the same simulation steps
and are rather challenging to synchronise. Some
existing synchronisation approaches have been
demonstrated recently in different fields. For example,
the cross-domain relationships of different assets
were evaluated using semantic technologies [85] or
using lifecycle management systems [86] to edit the
existing sub-models within a Digital Twin. To the
best of our knowledge, these ways are partially or not

automated and cannot be easily applied to the dynamic
environments of a C-ITS.

Lastly, regarding active data acquisition, such a
system should require:

• Acquisition of operational data from physical assets
and processing and analysing the data.

• Provide various assistance functions, such as
diagnosis and predictive quality.

• The ability to sample process data in a highly accurate
manner and to assign it to the corresponding Digital
Twin.

• Data unification or data curation.

Software modules and decentralised systems could
be employed for such an approach. Furthermore,
standardised connector interfaces ensure that shared
data are being generated in the field, and standardised
collectors (i.e., software modules) can collect the data
in the Cloud or the Edge. Two aspects of a Digital
Network Oracle, i.e., the ability to simulate and the
bidirectional interaction with intelligent agents (e.g., in
a Reinforcement Learning context), are also paramount.
Examples of that can be found in [84, 87].

Digital Twins are expected to lead the
experimentation on digital infrastructures in the
near future. However, the complexity introduced when
designing and developing such systems is tremendous.
Especially when connecting different Digital Twins to
create national Digital Twins able to emulate extensive
complex scenarios, standard good practices should be
followed between the different tools.

9. Challenges and Vulnerabilities
The emerging technologies discussed in earlier sections
undeniably enhance the capabilities of C-ITSs and
contribute to a more comprehensive cybersecurity
approach. Yet, introducing nascent technologies often
brings new challenges and potential vulnerabilities.
These issues need addressing before full integration
into any system. Transitioning from controlled
environments, like the CTEF, to real-world applications
presents its own set of challenges. This section delves
into the challenges and solutions associated with
the technologies above, standardisation efforts, and
the vulnerabilities that might arise when applied in
real-world scenarios.

9.1. Wireless Communication Plane Challenges
Sec. 2.3 touched upon the communication domains
within a C-ITS, and Sec. 2.5 discussed the architecture
of its future wireless plane. The wireless standards
mentioned are grounded in the renowned OSI model.
The ETSI TS 102 940 standard [88] delineates security

22

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

requirements on a per-layer basis (Fig. 13). This
suggests the implementation of multiple security
measures to safeguard a system. Additionally, the
ETSI TS 102 942 [89] standard offers a structure for
access control in C-ITS, encompassing authentication,
authorisation, and cryptographic certificate issuance.

Threat analysis is mandated for all V2X
communications. Such analyses have been proposed
in past works such as [90]. Broadly, the attack
surfaces correspond with the communication domains
described in Sec. 2.3. Each domain has its unique
characteristics and requirements, leading to unique
vulnerabilities. Exploiting these vulnerabilities can
lead to the attacks presented in Tab. 4. Existing
literature presents standards that address the security
of specific technologies and protocol stacks (e.g., ETSI
TS 133 501 [91] and 3GPP 33.501 [92] deal with the
3GPP 5G system security), while others (e.g., ETSI
TS 102 940 [88], ETSI TS 102 942 [89]), deal more
with the communication domains within a C-ITS. To
encapsulate the challenges:

• Varied authentication and authorisation levels are
essential for C-ITS stations to access networks and
services.

• Point-to-point communications require
confidentiality. Broadcast messages do not have
specific requirements.

• Privacy measures, like pseudonym changes, for
preventing tracking of C-ITS stations.

• Access control involving initialisation, enrolment
and authorisation credentials ensures only trusted
stations in the network.

• Trust and enrolment guidelines emphasise secure
storage of keys and cryptographic operations.

• Security services, such as integrity and replay
protection, are layered using defined access points.

• A Public Key Infrastructure (PKI) architecture must
manage credentials, certificate trust lists, and a
Misbehavior Authority for detecting and revoking
misbehaving devices.

More details about the standards related to the
wireless communication planes and the in-vehicle
communication domains can be found in [44, 45].

9.2. Open-source Software Challenges
While the prevailing opinion is that well-maintained
open-source solutions are typically more secure, their
open nature implies that vulnerabilities are also
accessible by malicious actors. If not updated regularly,
these vulnerabilities can be exploited. Authors in [93]

Figure 13. C-ITS security layers architecture [88].

provide an overview of the software product quality
problems, security issues and certain challenges
confronting the Open-Source Software (OSS). The
challenges associated OSS include:

• Public Exposure of Vulnerabilities: Issues and
vulnerabilities are often publicly listed on databases
like the National Vulnerability Database12.
Organisations that do not address these promptly
can become targets of malicious actions.

• Intellectual Property Risks: Open-source
components might inadvertently infringe on
intellectual property rights due to the lack of
standard commercial controls.

• Operational Inefficiencies: Organisations might
struggle to track and update open-source
components, leading to potential risks.

• Developer Malpractices: Open-source components
might become outdated or might not undergo
rigorous testing. Poor coding habits can result in
defective code that is hard to update or monitor.

To mitigate these challenges, organisations should
adopt to Software Assurance Maturity Models (SAMMs)
as outlined in existing literature [94] or in publicly
available open frameworks (e.g., OWASP SAMM [95]).
These tools evaluate and improve software security
practices, building balanced software security
assurance and demonstrating security assurance
improvements through an iterative process.

When deploying OSS, it is crucial to exercise extra
caution. The unique nature of OSS demands specialised
solutions to identify vulnerabilities, like Software
Composition Analysis (SCA) tools (or vulnerability
scanners as otherwise known). Moreover, adhering
to best practices related to software inventories,
licensing, and continuous threat monitoring is vital
throughout the SDLC and software lifecycle [96]. As
discussed, software vulnerability detection can leverage
traditional SCA tools or employ advanced technologies,

12NIST: National Vulnerability Database https://nvd.nist.gov/

23

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

including ML algorithms, for both source [57] and
binary [58] code analysis. Just like with proprietary
software, security responsibility should not rest solely
with the vendor, allowing for transparent security patch
resolutions.

9.3. Security and Authorisation Challenges
Security and authorisation in C-ITS primarily focus on
ensuring the safe and reliable exchange of information
among interconnected vehicles and infrastructure.
This must be achieved while preserving the privacy
and trustworthiness of the participating entities. As
technology rapidly evolves and networked systems
grow in scale, these challenges grow in complexity. We
can categorise these challenges as follows:

• Regulation and Policy Adaptation: Crafting
detailed security policies specifically for C-ITSs
and addressing any shortcomings or gaps in current
standards.

• Identity Management and Privacy: Handling the
complex dynamics of digital certificates, from their
issuance to revocation, and verifying the identity of
devices and components within a C-ITS.

• Resource Constraints and Scalability: Ensuring
processes, such as certificate revocation, remain
efficient and prompt, even as the system expands.

• Decentralisation and Dynamic Trust Evaluation:
Shifting towards decentralised infrastructure
solutions and dynamically adjusting participant
trust levels to maintain consistent system integrity.

The European Commission has tasked the C-ITS
Platform with defining a security policy [97] to
bolster the security of C-ITS. This policy governs the
use of certificates, especially concerning short-range
communications between vehicles, pedestrians, and
the infrastructure network. ETSI standards already
outlined a mechanism for disseminating and revoking
certificates [89, 98]. Existing standard limitations have
been the subject of various research endeavours. For
instance, the study in [99] describes a novel architecture
and a new trust model for a root Certification
Authority (CA). In C-ITS, CA is an entity that issues
digital certificates and can be an integral part of the
infrastructure network. Moreover, the CA is responsible
for revoking certificates associated with compromised
or misbehaving entities. The study in [99] combines
certifications, web tokens, and transport layer security
to guard against eavesdropping, malicious alterations,
and MitM attacks. Proposing a PKI supported by
short-living tokens that are never reused minimises the
impact of stolen tokens.

Similarly, vehicle identities can be substituted
with multiple abstract short-lived identifiers, i.e.,

pseudonyms. The study in [100] explores this concept.
The CA issues these pseudonym credentials and
verifies a vehicle’s eligibility to share data by retaining
its ID. This ensures location privacy since consecutive
messages are signed using different pseudonyms.
However, this approach demands more computational
resources, potentially affecting system scalability
and the efficiency of the revocation process. The
Pseudonymous PKI (PPKI) method was examined in
a smart grid context [101], revealing that a single
revocation scheme might not meet the overhead and
security requirements of all smart grid applications.

Considering the decentralised infrastructure
solutions proposed for future C-ITSs, efficient
decentralised PKI solutions are recommended. For
example, authors in [102] describe a learning game
involving vehicles that utilise certificates distributed
amongst themselves. These certificates can be revoked
if a trust value drops below a set threshold. The
environment rewards or penalises vehicles based on
their actions in the game.

9.4. Virtualisation & Container Orchestration
Challenges
Virtualisation technologies, such as 5G O-RAN, enable
mapping virtual machines (VMs) and containers to
physical resources. This facilitates designing and
deploying novel SecaaS algorithms and features for
future C-ITS [103]. However, this new architecture
poses security concerns, especially when users lose
physical control over their computation and data. The
primary attack vectors include:

• Architectural attacks: These exploit the abstraction
layer between physical hardware and virtualised
systems. For instance, VMs on the same network can
be vulnerable to simultaneous attacks, simplifying
unauthorised access.

• Hypervisor-based attacks: These target hypervisor
or container orchestration software vulnerabilities,
leading to issues like resource exhaustion or VM
sprawl.

• (Mis)configurations: Cloning or copying images
in a virtual environment can inadvertently deploy
unwanted infrastructure components. This can
introduce configuration drifts, making managing
and securing the environment harder.

Mitigating these risks for VM hypervisors involves
implementing policies for VM lifecycle management,
controlling VM image creation and use, and ensuring
quick recovery to a secure (initial/clean) state [104].
The security of the hypervisor is crucial, and managing
rapidly deployed environments is vital. Similar
principles apply to containers and their orchestrators.

24

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

For 5G-enabled computing solutions, such as O-RAN,
the confidentiality of 5G services remains intact due
to the distinction between RAN and core services.
As described in [105], the data exchanged between
containers undergo encryption and decryption at each
function. This is also highlighted in security standards
by 3GPP [92, 106]. The introduction of 5G O-RAN
overcomes previous hardware and vendor lock-in
concerns, promoting a more open hardware future.
The standardisation of O-RAN also addresses risks
related to poorly managed open-source solutions (as
introduced in Sec. 9.2).

However, while O-RAN and cloud-native
implementations offer significant benefits (Sec. 7.2),
the added abstraction layers necessitate enhanced
security. Ensuring secure interoperability in a complex
multi-vendor environment is essential. Configuration
errors can expose mission-critical resources and
application traffic. Moreover, API management and
security become paramount [107]. Both the host
systems and applications within containers must be
safeguarded from threats like privilege escalation
attacks [108]. Finally, applications inside the containers
should also be protected from external risks (e.g.,
ransomware gaining access to a container) [105].

9.5. Vulnerabilities in Serverless Architectures
In serverless architectures, providers like AWS Lambda
or Google Cloud Functions typically handle the security
of all cloud components. However, this does not exempt
developers from all responsibilities. Key implications of
adopting serverless architectures include:

• Data Leakage: Serverless functions are stateless,
leading to sensitive data being stored externally and
increasing leakage risks during data transfers.

• Multi-tenancy: Without dedicated servers for each
service or user, functions run on shared resources.
Misconfigurations can expose sensitive data or
compromise system security.

• Increased Attack Surface and Complexity:
Fragmenting applications into multiple serverless
functions can expand potential attack vectors.
Additionally, the ephemeral nature of these functions
limits the time developers have to identify and
address issues, complicating malicious event-data
injection countermeasures.

• Third-party Dependencies: Relying on third-party
software (open source, libraries, packages, etc.) in
serverless development can be challenging to manage
and increase the risk of inadequate security testing.

The inherent multi-tenancy of serverless computing
introduces unique security threats. Features like

pay-as-you-go and automatic scalability, while
advantageous, can be exploited in DoS attacks, leading
to unexpected costs for application owners [109]. Many
challenges in serverless computing mirror those in
virtualised and containerised applications. The study
in [109] categorises serverless computing’s security
challenges into four domains: 1) resource isolation, 2)
security monitoring, 3) security control, and 4) data
protection. The authors also provide a detailed analysis
of the risks in each domain and suggest potential
mitigation strategies.

In conclusion, serverless architectures promise cost
savings, scalability, and administrative ease, but they
also introduce new security challenges. To safeguard
serverless applications, continuous monitoring and
automated security tools are paramount. Best practices
include refining function permissions, enhancing
logging and monitoring mechanisms, and ensuring
robust data encryption.

9.6. Challenges with the Real-world Integration
The technologies discussed in Sec. 7 aim to seamlessly
integrate with real-world C-ITS. By introducing
abstraction, virtualisation, and containerisation, we
can separate cybersecurity applications and C-ITS
services from hardware dependencies. This framework
facilitates the scaling of envisioned solutions,
ensuring that real-world C-ITS can swiftly adopt new
cybersecurity frameworks and ML-based solutions.
Such an approach guarantees production-grade
operation within the CSCE.

Furthermore, the maturity model introduced in
Secs. 8.1 and 8.2 ensures that solutions, when deployed
in the real world, are of high quality, thus minimising
potential catastrophic impacts from flawed software
or hardware. In essence, a maturity model gauges the
progress in embedding security into daily operations
and the strategic undertakings of C-ITS. The Digital
Twins and Digital Network Oracles introduced in
Sec. 8.3 further bolsters the solutions the CSCE
provides. They help establish key requirements of a
C-ITS, such as security, resilience, and interoperability.

However, despite the advantages of these
technologies and strategies, several challenges arise in
real-world integration:

Privacy. C-ITS applications often process user
identification data (e.g., usernames, registration plates,
etc.), which must be protected against unauthorised
access and comply with local privacy regulations
(such as GDPR). Even applications that do not process
personal information can inadvertently de-anonymise
users when data is correlated with other datasets.
The challenge lies in ensuring that cybersecurity tools
designed for or within CTEF, consider data privacy
when applied to real-world scenarios. Authors in [110]

25

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

identify this as an issue in the EU Regulation on the
Free Flow of Non-personal Data [111]. Data anonymity
is a major issue that has to be investigated in the context
of C-ITS. Within the proposed CSCE, the challenge lies
in ensuring that cybersecurity tools designed for or
within CTEF, an isolated C-ITS environment, consider
data privacy when applied to real-world scenarios.

Operation. C-ITS environments, with their diverse
hardware, software, and network platforms, have strict
operational requirements. As noted in [112], many
C-ITS services (e.g., a crash avoidance system) rely on
communications with very low latency and other QoS
characteristics. Traditional cybersecurity approaches
may not be suitable due to the unique nature of C-ITS.
This highlights the need to develop new cybersecurity
tools tailored to C-ITS. CTEF can play a pivotal role
in the research and development efforts required,
providing space for incubating novel activities and
testing existing ones for their applicability in a C-ITS.

Resilience of a Real-world System. The fusion of legacy
and modern technologies in industrial control and
enterprise IT, combined with emerging technologies
within CAV platforms, leads to a new era of resilience
challenges. The CSCE plays a pivotal role in navigating
these challenges, leveraging metrics like the Mean Time
Between Failure and standards such as Safety Integrity
Levels (SIL) [113] and IEC 62061 [114].

The evolving landscape of cyber threats demands
a dynamic approach to resilience, especially in
cybersecurity. Established standards, from STIX [115],
provide a foundation for understanding threats, sharing
intelligence and countering them. Cybersecurity
models such as MITRE’s ATT&CK framework [116]
can help evaluate resilience concerning Threat Actors
/ Actor groups and their use of exploits/intrusion
sets. The even-evolving data and the CAV’s platform
robustness against attacks can be described in terms
of Tools, Techniques and Procedures (TTPs). Adopting
new technologies like ML introduces complexities,
necessitating a more granular, component-level
assessment of resilience.

In this interconnected age, a holistic approach to
resilience is paramount. This encompasses the: 1)
integration of old but stable and new but unpredictable
technical solutions, 2) continuous evaluation of the
resilience as the systems and threats evolve, 3)
proactive strategies, aiming to defend and anticipate,
adapt, and evolve in the face of emerging challenges,
4) stakeholder collaboration including technology
providers, regulatory bodies, and end-users, and 5)
training and awareness ensuring that those involved
in the design, deployment, and operation of C-ITS
platforms are well-trained and aware of the latest
threats and best practices.

Building resilience in real-world systems,
especially as complex as C-ITSs, is challenging but
essential. It requires combining technical solutions,
continuous evaluation, stakeholder collaboration, and
human-centric approaches. As the world becomes more
connected and technology continues to evolve, the
importance of resilience will only grow.

10. Conclusion
The ongoing digital transformation of transportation
systems unveils a plethora of opportunities and
challenges. At the centre of these challenges lies
cybersecurity, which has become not only a technical
priority but also a societal obligation. The CSCE
and CTEF frameworks outlined in this paper offer
a structured approach to address these cybersecurity
challenges, always with an eye on the seamless
integration of emerging technologies into real-world
scenarios. Our work underscored the importance of
robust testing mechanisms and facilities, detailing
the key technologies for providing the required
functionality. We portrayed our envisaged requirements
across the in-situ, in-vitro, and in-vivo domains of
a prospective C-ITS. Additionally, we delved into
the inherent challenges within each domain, offering
insights on the adopted technologies or suggestions
for future research pathways. A multi-layered security
strategy is essential to counteract the diverse array
of attack vectors. Integrating ML-powered intelligent
agents can strengthen detection capabilities, offering
a proactive attitude towards threat identification and
mitigation. As the transportation sector gravitates
towards real-world C-ITS deployments, continuous
monitoring becomes paramount. Safeguarding CAV
services is vital and guarantees their peak performance
and continuous operation. Moving forward, the focus
should remain on enhancing cybersecurity, fine-tuning
detection methodologies, and broadening the spectrum
of real-world testing scenarios.

Acknowledgement. This work was supported in part by
Toshiba Europe Ltd. and in part by the CAVShield project
(grant no. 133898, UK Research and Innovation, Innovate
UK).

References
[1] d’Orey, P.M. and Ferreira, M. (2014) ITS for

Sustainable Mobility: A Survey on Applications and
Impact Assessment Tools. IEEE Trans. Intell. Transp.
Syst. 15(2): 477–493. doi:10.1109/TITS.2013.2287257.

[2] Barreto, L., Amaral, A. and Baltazar, S. (2018)
Urban Mobility Digitalization: Towards Mobility as a
Service (MaaS). In Proc. of Int. Conf. Int. Sys.: 850–855.
doi:10.1109/IS.2018.8710457.

[3] Mavromatis, I., Tassi, A., Rigazzi, G., Piechocki, R.J.

and Nix, A. (2018) Multi-Radio 5G Architecture for

26

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://doi.org/10.1109/TITS.2013.2287257
https://doi.org/10.1109/IS.2018.8710457

Connected and Autonomous Vehicles: Application and
Design Insights. EAI Endorsed Trans. Ind. Netw. Intell.
Syst. 4(13). doi:10.4108/eai.20-3-2018.154368.

[4] Parkinson, S., Ward, P., Wilson, K. and Miller,

J. (2017) Cyber Threats Facing Autonomous and
Connected Vehicles: Future Challenges. IEEE
Trans. Intell. Transp. Syst. 18(11): 2898–2915.
doi:10.1109/TITS.2017.2665968.

[5] Amanullah, M.A., Loke, S.W., Baruwal Chhetri,

M. and Doss, R. (2023) A Taxonomy and Analysis
of Misbehaviour Detection in Cooperative Intelligent
Transport Systems: A Systematic Review. ACM Comput.
Surv. 56(1): 38. doi:10.1145/3596598.

[6] Pandey, M. and Seetharaman (2022) A Review of
Factors Impacting Cybersecurity in Connected and
Autonomous Vehicles (CAVs). In Proc. of CoDIT, 1:
1218–1224. doi:10.1109/CoDIT55151.2022.9804071.

[7] Sedar, R., Kalalas, C., Vázquez-Gallego, F., Alonso,

L. and Alonso-Zarate, J. (2023) A Comprehensive
Survey of V2X Cybersecurity Mechanisms and Future
Research Paths. IEEE Open J. Commun. Soc. 4: 325–391.
doi:10.1109/OJCOMS.2023.3239115.

[8] Talebkhah, M., Sali, A., Gordan, M., Hashim, S.J.

and Rokhani, F.Z. (2023) Comprehensive Review
on Development of Smart Cities Using Industry
4.0 Technologies. IEEE Access 11: 91981–92030.
doi:10.1109/ACCESS.2023.3302262.

[9] Tassi, A., Mavromatis, I., Piechocki, R., Nix,

A., Compton, C., Poole, T. and Schuster,

W. (2019) Agile Data Offloading over Novel
Fog Computing Infrastructure for CAVs.
In Proc. of IEEE VTC2019-Spring: 1–6.
doi:10.1109/VTCSpring.2019.8746302.

[10] Wen, L., Rickert, M., Pan, F., Lin, J. and Knoll,

A. (2023) Bare-Metal vs. Hypervisors and Containers:
Performance Evaluation of Virtualization Technologies
for Software-Defined Vehicles. In Proc. of IEEE IV: 1–8.
doi:10.1109/IV55152.2023.10186789.

[11] Kemp, G., Vargas-Solar, G., Da Silva, C.F.,
Ghodous, P., Collet, C. and Amaya, P.L. (2015)
Towards Cloud Big Data Services for Intelligent
Transport. In Proc. of ISPE ICCE, 2: 377 – 385.
doi:10.3233/978-1-61499-544-9-377.

[12] (2021) Road Vehicles — Cybersecurity Engineering.
Standard, International Organization for
Standardization.

[13] Roberts, A., Maennel, O. and Snetkov, N. (2021)
Cybersecurity Test Range for Autonomous Vehicle
Shuttles. In Proc. of IEEE EuroS&PW: 239–248.
doi:10.1109/EuroSPW54576.2021.00031.

[14] Maple, C., Bradbury, M., Le, A.T. and Ghirardello,

K. (2019) A Connected and Autonomous Vehicle
Reference Architecture for Attack Surface Analysis.
Applied Sciences 9(23). doi:10.3390/app9235101.

[15] Dominic, D., Chhawri, S., Eustice, R.M., Ma, D.

and Weimerskirch, A. (2016) Risk Assessment for
Cooperative Automated Driving. In Proc. of ACM
Workshop on CPS-SPC (Association for Computing
Machinery): 47–58. doi:10.1145/2994487.2994499.

[16] (2023) Architecture Reference for Cooperative and
Intelligent Transportation. Tech. report, United States

Department of Transport.
[17] Gupta, S., Maple, C. and Passerone, R. (2023)

An Investigation of Cyber-Attacks and Security
Mechanisms for Connected and Autonomous
Vehicles. IEEE Access 11: 90641–90669.
doi:10.1109/ACCESS.2023.3307473.

[18] Fang, Y., Shan, Z. and Wang, W. (2021) Modeling
and Key Technologies of a Data-Driven Smart
City System. IEEE Access 9: 91244–91258.
doi:10.1109/ACCESS.2021.3091716.

[19] Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H.

and Zedan, H. (2014) A Comprehensive Survey on
Vehicular Ad Hoc Network. J. Netw. Comput. Appl. :
380–392doi:10.1016/j.jnca.2013.02.036.

[20] González, D., Pérez, J., Milanés, V. and Nashashibi,

F. (2016) A Review of Motion Planning Techniques for
Automated Vehicles. IEEE Trans. Intell. Transp. Syst.
17(4): 1135–1145. doi:10.1109/TITS.2015.2498841.

[21] Malik, R.Q., Ramli, K.N., Kareem, Z.H.,
Habelalmatee, M.I., Abbas, A.H. and Alamoody, A.

(2020) An Overview on V2P Communication System:
Architecture and Application. In Proc. of IICETA:
174–178. doi:10.1109/IICETA50496.2020.9318863.

[22] (2018) Intelligent transport systems — Cooperative ITS
— Part 1: Roles and responsibilities in the context of
co-operative ITS architecture(s). Standard, International
Organization for Standardization.

[23] Mavromatis, I., Sanchez-Mompo, A., Raimondo,

F., Pope, J., Bullo, M., Weeks, I., Kumar, V. et al.
(2023) LE3D: A Lightweight Ensemble Framework
of Data Drift Detectors for Resource-Constrained
Devices. In Proc. of IEEE CCNC: 611–619.
doi:10.1109/CCNC51644.2023.10060415.

[24] Mavromatis, I. and Khan, A. (2023) Demo: LE3D:
A Privacy-preserving Lightweight Data Drift
Detection Framework. In Proc. of IEEE CCNC.
doi:10.1109/CCNC51644.2023.10060554.

[25] Kuppa, A. and Le-Khac, N.A. (2022)
Learn to Adapt: Robust Drift Detection in
Security Domain. Comput. Electr. Eng. 102.
doi:10.1016/j.compeleceng.2022.108239.

[26] Huq, N., Vosseler, R. and Swimmer,

M. (2018) Cyberattacks against Intelligent
Transportation Systems: Assessing Future Threats
to ITS. Tech. rep. URL https://documents.

trendmicro.com/assets/white_papers/

wp-cyberattacks-against-intelligent-transportation-systems.

pdf.
[27] Huq, N., Vosseler, R. and Swimmer, M. (2018)

Cyberattacks against Intelligent Transportation Systems:
Assessing Future Threats to ITS. Tech. report, TrendLabs.

[28] Sakiz, F. and Sen, S. (2017) A Survey of Attacks and
Detection Mechanisms on Intelligent Transportation
Systems: VANETs and IoV. Ad Hoc Networks 61: 33–50.
doi:https://doi.org/10.1016/j.adhoc.2017.03.006.

[29] Miller, C. (2019) Lessons Learned from
Hacking a Car. IEEE Design & Test 36(6): 7–9.
doi:10.1109/MDAT.2018.2863106.

[30] Zhao, C., Gill, J.S., Pisu, P. and Comert, G. (2022)
Detection of False Data Injection Attack in Connected
and Automated Vehicles via Cloud-Based Sandboxing.

27

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://doi.org/10.4108/eai.20-3-2018.154368
https://doi.org/10.1109/TITS.2017.2665968
https://doi.org/10.1145/3596598
https://doi.org/10.1109/CoDIT55151.2022.9804071
https://doi.org/10.1109/OJCOMS.2023.3239115
https://doi.org/10.1109/ACCESS.2023.3302262
https://doi.org/10.1109/VTCSpring.2019.8746302
https://doi.org/10.1109/IV55152.2023.10186789
https://doi.org/10.3233/978-1-61499-544-9-377
https://doi.org/10.1109/EuroSPW54576.2021.00031
https://doi.org/10.3390/app9235101
https://doi.org/10.1145/2994487.2994499
https://doi.org/10.1109/ACCESS.2023.3307473
https://doi.org/10.1109/ACCESS.2021.3091716
https://doi.org/10.1016/j.jnca.2013.02.036
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1109/IICETA50496.2020.9318863
https://doi.org/10.1109/CCNC51644.2023.10060415
https://doi.org/10.1109/CCNC51644.2023.10060554
https://doi.org/10.1016/j.compeleceng.2022.108239
https://documents.trendmicro.com/assets/white_papers/wp-cyberattacks-against-intelligent-transportation-systems.pdf
https://documents.trendmicro.com/assets/white_papers/wp-cyberattacks-against-intelligent-transportation-systems.pdf
https://documents.trendmicro.com/assets/white_papers/wp-cyberattacks-against-intelligent-transportation-systems.pdf
https://documents.trendmicro.com/assets/white_papers/wp-cyberattacks-against-intelligent-transportation-systems.pdf
https://doi.org/https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1109/MDAT.2018.2863106

IEEE Trans. Intell. Transp. Syst. 23(7): 9078–9088.
doi:10.1109/TITS.2021.3090361.

[31] Dasgupta, S., Rahman, M., Islam, M. and Chowdhury,

M. (2022) A Sensor Fusion-Based GNSS Spoofing
Attack Detection Framework for Autonomous Vehicles.
IEEE Trans. Intell. Transp. Syst. 23(12): 23559–23572.
doi:10.1109/TITS.2022.3197817.

[32] Ghosal, A., Halder, S. and Conti, M. (2020) STRIDE:
Scalable and Secure Over-The-Air Software Update
Scheme for Autonomous Vehicles. In Proc. of IEEE ICC:
1–6. doi:10.1109/ICC40277.2020.9148649.

[33] Abhishek, N.V., Aman, M.N., Lim, T.J. and Sikdar,

B. (2022) DRiVe: Detecting Malicious Roadside Units
in the Internet of Vehicles With Low Latency Data
Integrity. IEEE Internet Things J. 9(5): 3270–3281.
doi:10.1109/JIOT.2021.3097809.

[34] (2017) Architecture Reference for Cooperative and
Intelligent Transportation (ARC-IT). Tech. rep., U.S.
Department of Transportation.

[35] Jolfaei, A. and Kant, K. (2019) Privacy and Security of
Connected Vehicles in Intelligent Transportation
System. In Proc. of IEEE/IFIP DSN-S: 9–10.
doi:10.1109/DSN-S.2019.00010.

[36] Beckmann, H., Kropp, V. and Eissfeller, B.

(2014) New Integrity Concept for Intelligent
Transportation Systems (ITS) for Safety of Live (SoL)
Applications. In Proc. of IEEE/ION PLANS: 982–988.
doi:10.1109/PLANS.2014.6851463.

[37] Li, W., Xiao-ning, Z. and Zheng-yu, X. (2010) Research
on Traffic Information Demand and Supply Analysis
of Comprehensive Traffic Information Platform. In
Proc. of Third International Symposium on Information
Processing: 384–388. doi:10.1109/ISIP.2010.64.

[38] (2018) ETSI TS 102 941: Trust and Privacy Management.
Standard, European Standards Organization (ESO).

[39] Maaloul, S., Aniss, H., Kassab, M. and Berbineau, M.

(2021) Classification of C-ITS Services in Vehicular
Environments. IEEE Access 9: 117868–117879.
doi:10.1109/ACCESS.2021.3105815.

[40] Baldini, G. (2018) Testing and Certification of Automated
Vehicles (AV) Including Cybersecurity and Artificial
Intelligence Aspects. Tech. report, Joint Research Centre
(JRC).

[41] Beck, F., Lahmadi, A. and François, J. (2021) HSL:
a Cyber Security Research Facility for Sensitive Data
Experiments. In Proc. of IFIP/IEEE Int. Symp. on IM:
956–961.

[42] Kose, Y., Ozer, M., Bastug, M., Varlioglu, S.,
Basibuyuk, O. and Ponnakanti, H.P. (2021) Developing
Cybersecurity Workforce: Introducing CyberSec Labs
for Industry Standard Cybersecurity Training. In Proc.
of CSCI: 716–721. doi:10.1109/CSCI54926.2021.00184.

[43] Schoitsch, E. and Schmittner, C. (2020) Ongoing
Cybersecurity and Safety Standardization Activities
Related to Highly Automated/Autonomous Vehicles.
In Zachäus, C. and Meyer, G. [eds.] Proc. of AMAA:
72–86.

[44] Rathore, R.S., Hewage, C., Kaiwartya, O. and
Lloret, J. (2022) In-Vehicle Communication Cyber
Security: Challenges and Solutions. Sensors 22(17).
doi:10.3390/s22176679.

[45] Ivanov, I., Maple, C., Watson, T. and Lee, S.

(2018) Cyber security standards and issues in V2X
communications for Internet of Vehicles. In Proc. of
Living in the Internet of Things: Cybersecurity of the IoT:
1–6. doi:10.1049/cp.2018.0046.

[46] Thonhofer, E., Sigl, S., Fischer, M., Heuer, F.,
Kuhn, A., Erhart, J., Harrer, M. et al. (2023)
Infrastructure-Based Digital Twins for Cooperative,
Connected, Automated Driving and Smart Road
Services. IEEE Trans. Intell. Transp. Syst. 4: 311–324.
doi:10.1109/OJITS.2023.3266800.

[47] Polese, M., Bonati, L., D’Oro, S., Basagni, S.

and Melodia, T. (2023) Understanding O-RAN:
Architecture, Interfaces, Algorithms, Security, and
Research Challenges. IEEE Commun. Surveys Tuts.
25(2): 1376–1411. doi:10.1109/COMST.2023.3239220.

[48] Gannon, D., Barga, R. and Sundaresan, N. (2017)
Cloud-Native Applications. IEEE Cloud Computing 4(5):
16–21. doi:10.1109/MCC.2017.4250939.

[49] Nakata, R. and Otsuka, A. (2021) CyExec*: A
High-Performance Container-Based Cyber Range
With Scenario Randomization. IEEE Access 9:
109095–109114. doi:10.1109/ACCESS.2021.3101245.

[50] Sikorski, M. and Honig, A. (2012) Practical Malware
Analysis: The Hands-On Guide to Dissecting Malicious
Software (No Starch Press). doi:10.5555/2181153.

[51] Aslan, O.A. and Samet, R. (2020) A Comprehensive
Review on Malware Detection Approaches. IEEE Access
8: 6249–6271. doi:10.1109/ACCESS.2019.2963724.

[52] Sethi, K., Kumar, R., Sethi, L., Bera, P. and
Patra, P.K. (2019) A Novel Machine Learning
Based Malware Detection and Classification
Framework. In Proc. of Int. Conf. Cyber Secur: 1–4.
doi:10.1109/CyberSecPODS.2019.8885196.

[53] Griffin, K., Schneider, S., Hu, X. and Chiueh,

T.c. (2009) Automatic Generation of String
Signatures for Malware Detection. In Proc. of
RAID (Springer Berlin Heidelberg): 101–120.
doi:10.1007/978-3-642-04342-0_6.

[54] Vinayakumar, R., Alazab, M., Soman, K.P.,
Poornachandran, P. and Venkatraman, S. (2019)
Robust Intelligent Malware Detection Using
Deep Learning. IEEE Access 7: 46717–46738.
doi:10.1109/ACCESS.2019.2906934.

[55] Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani,

A.A. (2009) A Detailed Analysis of the KDD CUP 99
data set. In Proc. of IEEE Symposium on CISDA: 1–6.
doi:10.1109/CISDA.2009.5356528.

[56] Anderson, H.S. and Roth, P. (2018) EMBER: An
Open Dataset for Training Static PE Malware Machine
Learning Models. arXiv .

[57] Akter, M.S., Shahriar, H. and Bhuiya, Z.A.

(2023) Automated Vulnerability Detection
in Source Code Using Quantum Natural Language
Processing. In Wang, G., Choo, K.K.R., Wu,

J. and Damiani, E. [eds.] Proc. of Ubiquitous
Security (Springer Nature Singapore): 83–102.
doi:10.1007/978-981-99-0272-9_6.

[58] Schaad, A. and Binder, D. (2023)
Deep-Learning-Based Vulnerability Detection in
Binary Executables. In Jourdan, G.V., Mounier,

28

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://doi.org/10.1109/TITS.2021.3090361
https://doi.org/10.1109/TITS.2022.3197817
https://doi.org/10.1109/ICC40277.2020.9148649
https://doi.org/10.1109/JIOT.2021.3097809
https://doi.org/10.1109/DSN-S.2019.00010
https://doi.org/10.1109/PLANS.2014.6851463
https://doi.org/10.1109/ISIP.2010.64
https://doi.org/10.1109/ACCESS.2021.3105815
https://doi.org/10.1109/CSCI54926.2021.00184
https://doi.org/10.3390/s22176679
https://doi.org/10.1049/cp.2018.0046
https://doi.org/10.1109/OJITS.2023.3266800
https://doi.org/10.1109/COMST.2023.3239220
https://doi.org/10.1109/MCC.2017.4250939
https://doi.org/10.1109/ACCESS.2021.3101245
https://doi.org/10.5555/2181153
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.1109/CyberSecPODS.2019.8885196
https://doi.org/10.1007/978-3-642-04342-0_6
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1007/978-981-99-0272-9_6

L., Adams, C., Sèdes, F. and Garcia-Alfaro,

J. [eds.] Proc. of Foundations and Practice of
Security (Springer Nature Switzerland): 453–460.
doi:10.1007/978-3-031-30122-3_28.

[59] Zizzo, G., Hankin, C., Maffeis, S. and Jones,

K. (2019) Adversarial Machine Learning
Beyond the Image Domain. In Proc. of DAC
2019 (Association for Computing Machinery).
doi:10.1145/3316781.3323470.

[60] (2022) Information Security Management Systems.
Standard, International Organization for
Standardization.

[61] Green, B., Lee, A., Antrobus, R., Roedig, U.,
Hutchison, D. and Rashid, A. (2017) Pains, Gains and
PLCs: Ten Lessons from Building an Industrial Control
Systems Testbed for Security Research. In Proc. of CSET.

[62] Sommer, C., German, R. and Dressler, F. (2011)
Bidirectionally Coupled Network and Road Traffic
Simulation for Improved IVC Analysis. IEEE Trans.
Mob. Comput. 10(1): 3–15. doi:10.1109/TMC.2010.133.

[63] Lopez, P.A., Behrisch, M., Bieker-Walz, L., Erdmann,

J., Flötteröd, Y.P., Hilbrich, R., Lücken, L. et al. (2018)
Microscopic traffic simulation using sumo. In Proc. of
ITSC: 2575–2582. doi:10.1109/ITSC.2018.8569938.

[64] (2019) Cybersecurity and Intelligent Transportation
Systems: A Best Practice Guide. Tech. rep., U.S.
Department of Transportation. URL https://rosap.

ntl.bts.gov/view/dot/42461.
[65] (2010) Open Source Security Testing Methodology Manual

(OSSTMM). Tech. rep., Institute for Security and Open
Methodologies (ISECOM). URL https://www.isecom.

org/OSSTMM.3.pdf.
[66] Straub, J. (2020) Modeling Attack, Defense and

Threat Trees and the Cyber Kill Chain, ATT‘I&’CK
and STRIDE Frameworks as Blackboard Architecture
Networks. In Proc. of IEEE SmartCloud: 148–153.
doi:10.1109/SmartCloud49737.2020.00035.

[67] Sakiz, F. and Sen, S. (2017) A Survey of
Attacks and Detection Mechanisms on Intelligent
Transportation Systems. Ad Hoc Netw. 61: 33–50.
doi:10.1016/j.adhoc.2017.03.006.

[68] Nickerson, C., Kennedy, D., Smith, E., Rabie, A.,
Friedli, S., Searle, J., Knight, B. et al. (2014) Penetration
Testing Execution Standard. Standard.

[69] Blinowski, G., Ojdowska, A. and Przybyłek, A.

(2022) Monolithic vs. Microservice Architecture: A
Performance and Scalability Evaluation. IEEE Access 10:
20357–20374. doi:10.1109/ACCESS.2022.3152803.

[70] Rusti, B., Stefanescu, H., Iordache, M., Ghenta, J.,
Brezeanu, C. and Patachia, C. (2019) Deploying Smart
City Components for 5G Network Slicing. In Proc. of
EuCNC: 149–154. doi:10.1109/EuCNC.2019.8802054.

[71] Farnham, T.D., Jones, S., Aijaz, A., Jin, Y.,
Mavromatis, I., Raza, U., Portelli, A. et al.
(2021) UMBRELLA Collaborative Robotics Testbed
and IoT Platform. In Proc. of IEEE RoboCom.
doi:10.1109/CCNC49032.2021.9369615.

[72] Büch, D. and Esch, M. (2023) CiTe: A
Testbed for Smart City Applications and
Architectures. In Proc. of IEEE COINS: 1–6.
doi:10.1109/COINS57856.2023.10189229.

[73] Moravcik, M. and Kontsek, M. (2020)
Overview of Docker Container Orchestration
Tools. In Proc. of ICETA: 475–480.
doi:10.1109/ICETA51985.2020.9379236.

[74] Yang, S., Ren, Y., Zhang, J., Guan, J. and
Li, B. (2021) KubeHICE: Performance-aware
Container Orchestration on Heterogeneous-ISA
Architectures in Cloud-Edge Platforms. In Proc.
of IEEE ISPA/BDCloud/SocialCom/SustainCom: 81–91.
doi:10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00025.

[75] Böhm, S. and Wirtz, G. (2022) Cloud-Edge
Orchestration for Smart Cities: A Review of
Kubernetes-based Orchestration Architectures.
EAI Endorsed Trans. Smart Cities 6(18).
doi:10.4108/eetsc.v6i18.1197.

[76] Santos, J., Wauters, T., Volckaert, B. and De

Turck, F. (2019) Towards Network-Aware Resource
Provisioning in Kubernetes for Fog Computing
Applications. In Proc. of IEEE NetSoft: 351–359.
doi:10.1109/NETSOFT.2019.8806671.

[77] McGrath, G. and Brenner, P.R. (2017) Serverless
Computing: Design, Implementation, and
Performance. In Proc. of IEEE ICDCSW: 405–410.
doi:10.1109/ICDCSW.2017.36.

[78] Ghaffari, F. and Arabsorkhi, A. (2018)
A New Adaptive Cyber-security Capability
Maturity Model. In Proc. of IST: 298–304.
doi:10.1109/ISTEL.2018.8661018.

[79] Selamat, A., Marican, M.N.Y., Othman, S.H.

and Razak, S.A. (2022) An End-To-End Cyber
Security Maturity Model For Technology
Startups. In Proc. of IEEE ICOCO: 185–190.
doi:10.1109/ICOCO56118.2022.10031900.

[80] Marican, M.N.Y., Razak, S.A., Selamat, A. and
Othman, S.H. (2023) Cyber Security Maturity
Assessment Framework for Technology Startups:
A Systematic Literature Review. IEEE Access 11:
5442–5452. doi:10.1109/ACCESS.2022.3229766.

[81] Bartwal, U., Mukhopadhyay, S., Negi, R.

and Shukla, S. (2022) Security Orchestration,
Automation, and Response Engine for Deployment
of Behavioural Honeypots. In Proc. of IEEE DSC: 1–8.
doi:10.1109/DSC54232.2022.9888808.

[82] Andrade, R.O., Yoo, S.G., Tello-Oquendo, L. and
Ortiz-Garcés, I. (2020) A Comprehensive Study of
the IoT Cybersecurity in Smart Cities. IEEE Access 8:
228922–228941. doi:10.1109/ACCESS.2020.3046442.

[83] Liu, Q., Qi, X., Liu, S., Cheng, X., Ke, X. and Wang, F.

(2022) Application of Lightweight Digital Twin System
in Intelligent Transportation. IEEE J. Radio Freq. Identif.
6: 729–732. doi:10.1109/JRFID.2022.3212169.

[84] Mavromatis, I., Piechocki, R., Sooriyabandara,

M. and Parekh, A. (2020) DRIVE: A Digital
Network Oracle for Cooperative Intelligent
Transportation Systems. In Proc. of IEEE ISCC.
doi:10.1109/ISCC50000.2020.9219683.

[85] Feldmann, S., Kernschmidt, K. and Vogel-Heuser, B.

(2014) Combining a SysML-based Modeling Approach
and Semantic Technologies for Analyzing Change
Influences in Manufacturing Plant Models. Procedia
CIRP 17: 451 – 456. doi:10.1016/j.procir.2014.01.140.

29

Cybersecurity in Motion: A Survey of Challenges and Requirements for Future Test Facilities of CAVs

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://doi.org/10.1007/978-3-031-30122-3_28
https://doi.org/10.1145/3316781.3323470
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/ITSC.2018.8569938
https://rosap.ntl.bts.gov/view/dot/42461
https://rosap.ntl.bts.gov/view/dot/42461
https://www.isecom.org/OSSTMM.3.pdf
https://www.isecom.org/OSSTMM.3.pdf
https://doi.org/10.1109/SmartCloud49737.2020.00035
https://doi.org/10.1016/j.adhoc.2017.03.006
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/EuCNC.2019.8802054
https://doi.org/10.1109/CCNC49032.2021.9369615
https://doi.org/10.1109/COINS57856.2023.10189229
https://doi.org/10.1109/ICETA51985.2020.9379236
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00025
https://doi.org/10.4108/eetsc.v6i18.1197
https://doi.org/10.1109/NETSOFT.2019.8806671
https://doi.org/10.1109/ICDCSW.2017.36
https://doi.org/10.1109/ISTEL.2018.8661018
https://doi.org/10.1109/ICOCO56118.2022.10031900
https://doi.org/10.1109/ACCESS.2022.3229766
https://doi.org/10.1109/DSC54232.2022.9888808
https://doi.org/10.1109/ACCESS.2020.3046442
https://doi.org/10.1109/JRFID.2022.3212169
https://doi.org/10.1109/ISCC50000.2020.9219683
https://doi.org/10.1016/j.procir.2014.01.140

[86] Walla, W. and Kiefer, J. (2011) Life Cycle Engineering
– Integration of New Products on Existing Production
Systems in Automotive Industry. In Hesselbach,

J. and Herrmann, C. [eds.] Proc. of Glocalized
Solutions for Sustainability in Manufacturing: 207–212.
doi:10.1007/978-3-642-19692-8_36.

[87] Nie, L., Wang, X., Zhao, Q., Shang, Z., Feng, L.

and Li, G. (2023) Digital Twin for Transportation Big
Data: A Reinforcement Learning-Based Network Traffic
Prediction Approach. IEEE Trans. Intell. Transp. Syst. :
1–11doi:10.1109/TITS.2022.3232518.

[88] (2018) ETSI TS 102 940: ITS communications security
architecture and security management . Tech. rep.,
European Standards Organization (ESO).

[89] (2012) ETSI TS 102 942: Intelligent Transport Systems
(ITS) Security - Access Control. Tech. rep.

[90] Festag, A., Noecker, G., Strassberger, M., Lübke,

A., Bochow, B., Torrent-Moreno, M., Schnaufer, S.

et al. (2008) Network on Wheels: Project Objectives,
Technology and Achievements. In Proc. of IEEE/IFIP
DSN-S: 9–10.

[91] (2020) ETSI TS 133 501: Security architecture and
procedures for 5G System. Tech. rep.

[92] (2023) 3GPP 33.501: Security Architecture and
Procedures for 5G System. Tech. rep.

[93] Haider, S., Khalil, W., Al-Shamayleh, A.S.,
Akhunzada, A. and Gani, A. (2023) Risk Factors
and Practices for the Development of Open Source
Software From Developers’ Perspective. IEEE Access
11: 63333–63350. doi:10.1109/ACCESS.2023.3267048.

[94] Wen, S.F. (2017) Software Security in Open
Source Development: A Systematic Literature
Review. In Proc. of FRUCT: 364–373.
doi:10.23919/FRUCT.2017.8250205.

[95] (2022) Software Assurance Maturity Model: A Guide to
Building Security into Software Development. Tech. rep.

[96] Kengo Oka, D. (2021) Software Composition
Analysis in the Automotive Industry, 91–110.
doi:10.1002/9781119710783.ch6.

[97] (2018) Certificate Policy for Deployment and Operation
of European Cooperative Intelligent Transport Systems
(C-ITS) Phase 2,". Tech. rep.

[98] (2021) ETSI TS 103 097: Security header and certificate
formats. Tech. rep., European Standards Organization
(ESO).

[99] Lu, M., Blokpoel, R., Fünfrocken, M. and
Castells, J. (2018) Open Architecture for
Internet-based C-ITS Services. In Proc. of ITSC:
7–13. doi:10.1109/ITSC.2018.8569941.

[100] Petit, J., Schaub, F., Feiri, M. and Kargl, F. (2015)
Pseudonym Schemes in Vehicular Networks: A
Survey. IEEE Commun. Surv. Tuto. 17(1): 228–255.
doi:10.1109/COMST.2014.2345420.

[101] Mahmoud, M.M.E.A., Mišić, J., Akkaya, K. and Shen, X.

(2015) Investigating Public-Key Certificate Revocation
in Smart Grid. IEEE Internet Things J. 2(6): 490–503.
doi:10.1109/JIOT.2015.2408597.

[102] Kumar, N., Iqbal, R., Misra, S. and Rodrigues,

J.J. (2015) An Intelligent Approach for Building
a Secure Decentralized Public Key Infrastructure

in VANET. J. Comput Syst. Sci. 81(6): 1042–1058.
doi:10.1016/j.jcss.2014.12.016.

[103] Torkura, K.A., Sukmana, M.I., Cheng, F. and Meinel,

C. (2017) Leveraging Cloud Native Design Patterns
for Security-as-a-Service Applications. In Proc. of IEEE
SmartCloud: 90–97. doi:10.1109/SmartCloud.2017.21.

[104] Lozano, S., Lugo, T. and Carretero, J. (2023) A
Comprehensive Survey on the Use of Hypervisors in
Safety-Critical Systems. IEEE Access 11: 36244–36263.
doi:10.1109/ACCESS.2023.3264825.

[105] Sultan, S., Ahmad, I. and Dimitriou, T. (2019)
Container Security: Issues, Challenges, and
the Road Ahead. IEEE Access 7: 52976–52996.
doi:10.1109/ACCESS.2019.2911732.

[106] Teppo, P. and Norrman, K. (2018) Security in 5G
RAN and core deployments. Tech. rep., The Ericsson
Research Foundation. URL https://www.ericsson.

com/en/reports-and-papers/white-papers/

security-in-5g-ran-and-core-deployments.
[107] Díaz-Rojas, J.A., Ocharán-Hernández, J.O.,

Pérez-Arriaga, J.C. and Limón, X. (2021) Web API
Security Vulnerabilities and Mitigation Mechanisms:
A Systematic Mapping Study. In Proc. of CONISOFT:
207–218. doi:10.1109/CONISOFT52520.2021.00036.

[108] Pope, J., Raimondo, F., Kumar, V., McConville,

R., Piechocki, R., Oikonomou, G., Pasquier, T.

et al. (2021) Container Escape Detection for
Edge Devices. In Proc. of ACM SenSys: 532–536.
doi:10.1145/3485730.3494114.

[109] Li, X., Leng, X. and Chen, Y. (2023) Securing
Serverless Computing: Challenges, Solutions,
and Opportunities. IEEE Network 37(2): 166–173.
doi:10.1109/MNET.005.2100335.

[110] Chatzimichali, A. and Chrysostomou, D. (2019)
Human-data Interaction and User Rights at the
Personal Robot Era. In Proc. of ICRES.

[111] (2018) Regulation (EU) 2018/1807 of the European
Parliament and of the Council on a framework for the free
flow of non-personal data in the European Union. Tech.
rep., European Union.

[112] Fysarakis, K., Askoxylakis, I.G., Katos, V., Ioannidis,

S. and Marinos, L. (2017) Security Concerns in
Cooperative Intelligent Transportation Systems (Taylor &
Francis Group). doi:10.1201/b21885-16.

[113] Torok, A., Szalay, Z. and Saghi, B. (2022)
New Aspects of Integrity Levels in Automotive
Industry-Cybersecurity of Automated Vehicles.
IEEE Trans. Intell. Transp. Syst. 23(1): 383–391.
doi:10.1109/TITS.2020.3011523.

[114] (2021) Safety of Machinery. Standard, International
Electrotechnical Commission.

[115] Sadique, F., Cheung, S., Vakilinia, I., Badsha, S. and
Sengupta, S. (2018) Automated Structured Threat
Information Expression (STIX) Document Generation
with Privacy Preservation. In Proc. of IEEE UEMCON:
847–853. doi:10.1109/UEMCON.2018.8796822.

[116] Roy, S., Panaousis, E., Noakes, C., Laszka, A., Panda,

S. and Loukas, G. (2023) SoK: The MITRE ATT&CK
Framework in Research and Practice. Arxiv .

30

I. Mavromitis et al.

EAI Endorsed Transactions on
Industrial Networks and Intelligent Systems

| Volume 10 | Issue 4 |

https://doi.org/10.1007/978-3-642-19692-8_36
https://doi.org/10.1109/TITS.2022.3232518
https://doi.org/10.1109/ACCESS.2023.3267048
https://doi.org/10.23919/FRUCT.2017.8250205
https://doi.org/10.1002/9781119710783.ch6
https://doi.org/10.1109/ITSC.2018.8569941
https://doi.org/10.1109/COMST.2014.2345420
https://doi.org/10.1109/JIOT.2015.2408597
https://doi.org/10.1016/j.jcss.2014.12.016
https://doi.org/10.1109/SmartCloud.2017.21
https://doi.org/10.1109/ACCESS.2023.3264825
https://doi.org/10.1109/ACCESS.2019.2911732
https://www.ericsson.com/en/reports-and-papers/white-papers/security-in-5g-ran-and-core-deployments
https://www.ericsson.com/en/reports-and-papers/white-papers/security-in-5g-ran-and-core-deployments
https://www.ericsson.com/en/reports-and-papers/white-papers/security-in-5g-ran-and-core-deployments
https://doi.org/10.1109/CONISOFT52520.2021.00036
https://doi.org/10.1145/3485730.3494114
https://doi.org/10.1109/MNET.005.2100335
https://doi.org/10.1201/b21885-16
https://doi.org/10.1109/TITS.2020.3011523
https://doi.org/10.1109/UEMCON.2018.8796822

	1 Introduction
	2 Background
	2.1 CAV Attack Surface
	2.2 Modelling and Representing the Data Surface
	2.3 C-ITS Communication Domains
	2.4 Security Objectives for a C-ITS
	2.5 C-ITS Concepts and System Design

	3 Related works
	4 CSCE and CTEF System Description
	4.1 CSCE and its Testing Facilities Requirements
	4.2 Scope and Key Characteristics of CSCE
	4.3 The Different Dimensions of C-ITS Cybersecurity

	5 CSCE Architecture and System Design
	6 Designing a CTEF
	6.1 CTEF: In-vitro Testing and Analysis
	6.2 High-Level Design for In-vitro tests
	6.3 CTEF: In-situ Testing and Analysis
	6.4 High-Level Design for In-situ tests

	7 Technical & Functional Specification
	7.1 Microservices Architecture in Cybersecurity
	7.2 Cloud-native Architectures for Cybersecurity
	7.3 Containerisation of Software and Orchestration
	7.4 Serverless and Functions-as-a-Service

	8 In-vivo Monitoring and Protection
	8.1 Maturing Cybersecurity Tools
	8.2 Cybersecurity of the Real-world Infrastructure
	8.3 Digital Twins and Digital Network Oracles

	9 Challenges and Vulnerabilities
	9.1 Wireless Communication Plane Challenges
	9.2 Open-source Software Challenges
	9.3 Security and Authorisation Challenges
	9.4 Virtualisation & Container Orchestration Challenges
	9.5 Vulnerabilities in Serverless Architectures
	9.6 Challenges with the Real-world Integration
	Privacy
	Operation
	Resilience of a Real-world System

	10 Conclusion

