
CAMINO: Cloud-native Autonomous Management
and Intent-based Orchestrator

Konstantinos Antonakoglou, Ioannis Mavromatis, Saptarshi Ghosh, Mark Rouse, Konstantinos Katsaros
Digital Catapult, London, UK

Emails: {konstantinos.antonakoglou, ioannis.mavromatis, saptarshi.ghosh, mark.rouse, kostas.katsaros}@digicatapult.org.uk

Abstract—This paper introduces CAMINO, a Cloud-native
Autonomous Management and Intent-based Orchestrator de-
signed to address the challenges of scalable, declarative, and
cloud-native service management and orchestration. CAMINO
leverages a modular architecture, the Configuration-as-Data
(CaD) paradigm, and real-time resource monitoring to facil-
itate zero-touch provisioning across multi-edge infrastructure.
By incorporating intent-driven orchestration and observability
capabilities, CAMINO enables automated lifecycle management
of network functions, ensuring optimized resource utilisation.
The proposed solution abstracts complex configurations into
high-level intents, offering a scalable approach to orchestrating
services in distributed cloud-native infrastructures. This paper
details CAMINO’s system architecture, implementation, and key
benefits, highlighting its effectiveness in cloud-native telecommu-
nications environments.

Index Terms—Intent-driven, Cloud-native, MANO, Observ-
ability, Configuration-as-data

I. INTRODUCTION

The cloud computing and telecommunications industry
stakeholders face increasingly complex and multifaceted chal-
lenges in the management and orchestration (MANO) of ser-
vice and network intents, particularly as deployments become
more heterogeneous in terms of underlying technologies and
system scale [1]. The expectations for autonomous systems
with automation capabilities are growing, necessitating closed-
loop control at different levels and phases of MANO work-
flows.

To enable such capabilities, Network Function Virtualisation
(NFV) MANO platforms allow services to consume computing
and network resources (both physical and virtual) offered by
infrastructure providers (InPs). These resources are distributed
across distinct administrative domains (e.g., belonging to net-
work operators) to support the deployment of interconnected
meshes of Virtual Network Functions (VNFs) and Cloud-
native Network Functions (CNFs).

According to ETSI Zero-touch Network and Service Man-
agement (ZSM) specifications [2], a management or adminis-
trative domain is an autonomous entity that groups computing
and network resources under a single administrative authority.
These domains are separated due to differences in infras-
tructure, data ownership, policies, and operational constraints,
each responsible for resource management and security. They
may face unique complexity and scalability challenges while
operating with varying infrastructure capabilities, such as
Radio Access Technologies or computing resources within the
edge-cloud continuum.

Within a single administrative domain, a MANO platform
orchestrates network functions and other services in a fed-
erated (vertical or horizontal) fashion, interacting with the
domain components and external consumers of the north-
bound/southbound APIs. This becomes particularly complex
when multiple administrative domains need to be orchestrated
in parallel (e.g., as in [3]) or when multiple network segments
or “edges” (each potentially with its own orchestrator) are part
of the same administrative domain (e.g. as in [4]).

Based on the above, we present Cloud-native Autonomous
Management and INtent-based Orchestrator (CAMINO), a
scalable MANO architecture that enables the orchestration of
services within multi-level administrative domains. We build
upon traditional NFV MANO principles and extend them
across a modernised architecture that can accommodate the
requirements of a 6G and cloud-native system. Compared to
other platforms, it facilitates a configuration-centric approach
of zero-touch provisioning of deployment intents by enabling
closed-loop multi-edge orchestration featuring service broker-
ing, resource monitoring and admission control capabilities.
In this paper, we focus on the architecture of CAMINO, the
design decisions and the initial implementation of the idea,
discussing the lessons learned, the challenges faced, and the
enhancements provided compared to existing solutions.

The remainder of this paper is as follows. Sec. II presents
related work on MANO platforms, highlighting existing ap-
proaches and limitations. Sec. III introduces the CAMINO
architecture, detailing its functional components and their in-
teractions. Sec. IV describes the implementation of CAMINO,
including the tools and technologies used. Finally, Sec. V
concludes the paper and outlines potential future directions.

II. RELATED WORK

The increased complexity of cloud and edge deployments
has led to the creation of MANO platforms that abstract
and automate the management and configuration of such
technologies. In [5], the survey underscores the value of a
declarative approach to network slice provisioning with the
translation of high-level service requirements into technical
descriptions of network slices or subnets capable of fulfilling
them. It is also noted that there is a lack of guidelines on how
declarative provisioning APIs are designed. CAMINO builds
upon this principle by decoupling the configuration values
from the application code and the declarative deployment files,
building upon the Configuration-as-Data (CaD) concept.



Monitoring
data

(labelled)

ManagementNode

Northbound API AdministrativeDomain

pull
configured
packages

Capability
Advertisement

...

External API consumer

Monitoring Service
(Thanos Querier)

Domain
Manager

...

Fetch blueprintspush/delete
configured
packages

Deployment
Repository N

Storage

Deployment
Repository 2

Storage

Deployment
Repository 1

Storage

Blueprints
Repository

Storage

Edge
Node 1

Edge orchestrator 1

NF
1-a

NF
1-b

NF
1-x

..

Monitoring

Reconciliation
(ConfigSync)

Service Mesh
Operator (Istio)

Edge
Node 2

Edge orchestrator 2

NF
2-a

NF
2-b

NF
2-x

..

Monitoring

Reconciliation
(ConfigSync)

Service Mesh
Operator (Istio)

Edge
Node Ν

Edge orchestrator Ν

NF
Ν-a

NF
N-b

NF
N-x

..

Monitoring

Reconciliation
(ConfigSync)

Service Mesh
Operator (Istio)

Network Manager

Inter-Edge
Service Descriptors

Storage
OrchestrationManager

Package
Orchestrator
(Porch, Kpt)

Admission control

Service Lifecycle
Manager

Deployment Service

Run-time
Cache

Data
Lake

Fig. 1. Functional block diagram of CAMINO showing service orchestration (blue), monitoring (orange) and network management (green) elements.

Two established open-source end-to-end (E2E) MANO plat-
forms are the Open Network Automation Platform (ONAP) [6]
of Linux Foundation and the Open Source MANO (OSM) [7]
from ETSI. They both support cloud infrastructure platforms
such as OpenStack and Kubernetes to deploy VNFs and CNFs.
However, both solutions have inherent complexity from legacy
telecom use cases and ETSI standards, and neither ONAP nor
OSM supports a declarative way of service provisioning [8].
CAMINO brings a modular architecture, building upon declar-
ative and intent-driven models and provides a solution that
moves beyond traditional NFV, aiming to manage modern
multi-domain-multi-edge network resources and services.

Another Linux Foundation project that follows the above
principles is Nephio [9], an intent-based cloud-native platform
for the automated deployment and management of network
functions based on CaD. However, Nephio is not an E2E
MANO platform but acts as an abstraction layer between
the E2E MANO platform layer and the layer of edge-level
orchestrators/controllers. Furthermore, Nephio is a set of inter-
changeable open-source components per the CaD and intent-
based orchestration principles. CAMINO utilises Nephio,
leveraging how it handles configuration data and extends it
with a more robust and scalable management and orchestration
toolchain that allows for better lifecycle management (LCM)
of service and network functions.

Even though the platforms above strive to provide holistic
MANO solutions, they still fail to adequately address several
critical administrative domain activities such as infrastruc-
ture management, SLA management and assurance, optimised

placement and scaling, and policy enforcement, requiring
additional components or extensions to bridge these gaps. The
authors of [8] propose an architecture for zero-touch service
MANO with run-time mechanisms that support it, but does not
address scalability in VIM configuration management. They
also focus on VM-based deployments such as OSM.

Authors in [10] highlight the importance of transition-
ing from VM-based to CNF-based workloads, introducing
a Kubernetes Operator plane where multiple custom Kuber-
netes Operators declaratively implement MANO functional-
ities. However, this work does not focus on scalability and
configuration management.

Finally, [11] focuses on managing cloud-native infrastruc-
tures using a Logical Kubernetes Cluster and scheduling
cloud-native workloads but without addressing the required
data structures required to orchestrate the deployments and
the coordination with other similar platforms. CAMINO holis-
tically addresses the above issues and provides a uniform
solution envisioning to modernise MANO solutions in future
networking systems.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the functional blocks of the CAMINO architec-
ture and their interconnections within the same administrative
domain. The overall system enables the management and
deployment of network function workloads in multiple Edge
Orchestrators, monitoring resources for evaluating running
deployments and admission control of deployment intents.

The edge orchestrators are controlled by the Orchestration
Manager. We consider cloud-native Edge Orchestrators as well



as a cloud-native Management node. For service and network
deployments across administrative domains, a cross-domain
orchestrator (CDO) is required. The following sections de-
scribe CAMINO’s function blocks, highlighting configuration
details, design decisions, and relevant interconnections.
Listing 1. An example service deployment intent (JSON) on a single
administrative domain (Domain-X) considering a network function chain with
a CNF placed in a different administrative domain (Domain-Y).
1 {
2 "domain_name": "Domain-X",
3 "deployment_id": "338d10a2-2669-46e1",
4 "timestamp": "2025-01-24T20:55:50.991211",
5 "services": [
6 {
7 "package_name": "CNF-1",
8 "version": "v1",
9 "qos_level": "default"

10 },{
11 "package_name": "CNF-2",
12 "version": "v3",
13 "qos_level": "default",
14 "dependencies": [
15 {
16 "after": "CNF-3",
17 "domain": "Domain-Y",
18 "fqdn": "yyy.yyy.yyy.yyy"
19 },{
20 "after": "CNF-1",
21 "domain": "Domain-X",
22 "fqdn": "xxx.xxx.xxx.xxx"
23 }
24 ]
25 },{
26 "package_name": "CNF-4",
27 "version": "v2",
28 "qos_level": "default",
29 "dependencies": [
30 {
31 "after": "CNF-2",
32 "domain": "Domain-X",
33 "fqdn": "xxx.xxx.xxx.xxx"
34 }
35 ]
36 }
37 ]
38 }

A. Deployment Intents and Packages
A deployment intent represents an E2E service request

deployed across multiple edge clusters (e.g., due to latency or
privacy constraints of the E2E application). Listing 1 provides
an example deployment intent. In our architecture, this E2E
deployment intent comprises one or multiple service com-
ponents, referred to as packages. These may include VNFs,
CNFs, or other cloud-native components and configurations
that collectively fulfil specific network and computing tasks.
For example, a package may be an Nginx ingress controller,
while another may define an Ingress rule (e.g., in a Kubernetes
cluster). A deployment intent is a high-level description of
all the services and network configurations, including their
associated package names, relevant resource requirements and
dependencies.

To manage deployment intents efficiently, we adopt the
CaD principle, treating packages as declarative configuration
bundles managed by version control systems [12]. This al-
lows centralised and simplified tracking of changes, package
versioning and collaborative authoring, with the benefits of
a declarative approach that separates configurations from the
code that operates them. The configurations are divided into
blueprint (”dry”) configurations, which contain the component
assembly information, and deployment (”hydrated”) configu-
rations, that is, the declarative statement of the desired state.
Consequently, we classify the repositories that host packages
into blueprint repositories and deployment repositories, re-
spectively.

CDO/
Federated
Orchestration

Fig. 2. Example deployment of a network function chain based on Listing 1,
and the order of deployment (in red), between two administrative domains.

B. Order of Deployment and Service Brokering

Listing 1 shows the deployment order and interdependencies
across different network and service functions. The order and
interdependencies can either be chosen by an end-user or
automatically generated as part of a service brokering. For
example, such a deployment intent can originate from a user
portal or a cross-domain orchestrator (as in [13]).

In Fig. 2, and according to Listing 1, we see the execution
order for four CNFs, three deployed by CAMINO in the
administrative Domain X and one handled by a different
administrative authority in Domain Y. The order dictates the
generation of the required deployment configuration files for
the entire chain. This is crucial because specific configurations
(e.g., a Kubernetes “service”, or the FQDN of a different
domain) must be used as inputs to the following packages.
Since JSON captures associations without order, we adopt a
”labelling” approach, using the ”after” label to control the
deployment sequence. Based on the given labels, the Domain
Manager performs a basic topological ordering and constructs
a directed graph of the services with linear ordering. This
graph represents the order of execution.

C. Reconciliation and Deployment Configuration

Based on the above order, the blueprint configurations
describing a package are modified to compile a deployment
configuration. These configurations are manifests stored in
the corresponding deployment repositories. Each repository
is linked to a reconciliation operator installed in each edge
node (e.g., Kubernetes cluster). This operator synchronises the
state of an edge deployment with the contents of its assigned
deployment repository, which serves as the source of truth.
In principle, when a configuration is added to or updated
in a repository, the edge orchestrator automatically deploys
it. Similarly, when a configuration is removed, the service is
terminated.

To automate the declarative distribution and customisation
of one or more blueprint packages, an Inter-Edge Service
Descriptor (IESD) is required, stored in a separate storage
entity. The IESD bundles the minimum deployment require-
ments and additional configurations to compile new manifests.
All blueprint configurations include various parameterised
field values and act as templates, enabling CRUD operations
during deployment without violating the declarative manifest’s
schema.

For example, if an intent requires a package to be
deployed, a JSON document as in Listing 2 is created
and used to generate the deployment configuration. If the



deployment corresponds to a Kubernetes Deployment re-
source, the “version” and “package name” labels can gen-
erate the container image tag, the resources can be used
as part of the Kubernetes resource request or limits (i.e.,
in spec.template.spec.containers[].resources), while the “qos”
label can control an environmental variable that modifies
a set of exposed QoS configurations from the application.
Additionally, different labels can be included (e.g., network
resources, network slices, specific naming conventions, etc.)
depending on application requirements.

Listing 2. Description of a package instance in JSON format
1 {
2 "name": "example_package",
3 "package_requirements": [{
4 "qos": "default",
5 "revision": "v5",
6 "package_resources": {
7 "container": "example_container",
8 "cpu": 8,
9 "memory": "1000000Ki"

10 }
11 }]
12 }

D. Orchestration Manager
Each of the packages stored in the blueprints repository is a

potential service or configuration that can be deployed by the
Orchestration Manager once a deployment intent is forwarded
by the Domain Manager. The Orchestration Manager is a
logical entity composed of subcomponents that provide the
following capabilities:

• Registration/deletion of blueprint and deployment repos-
itories.

• Service LCM and distribution of configuration bundles
from blueprint repositories to deployment repositories.

• Manipulation of blueprint packages, including composi-
tion or selection of the appropriate IESDs.

• Configuration of network resources consumed by services
of each deployment.

• Discovery of minimum requirements for selected intents
to enable admission control using the monitoring data.

E. Admission Control and Resource monitoring
The role of the Admission Controller is twofold. Initially, it

checks the configurations and IESDs (validates the schema or
the content of the files) to prevent misconfiguration. Moreover,
it verifies whether the required resources are available for a
service (e.g., enough CPU cores and RAM) or a configuration
(e.g., an Ingress Controller is available).

A monitoring plane is required to track resource utilisation.
The monitoring tools at the edge clusters collect the available
resources and monitor the existing deployments. The monitor-
ing service at the management node ensures enough resources
are available at each cluster, raises alerts for misbehaving ap-
plications and aggregates the monitoring data for visualisation
purposes.

There are two kinds of resources being monitored: 1) In-
frastructure resources: overall metrics of each cluster within
the administrative domain. 2) Workload resources: metrics
specific to each deployed network function.

External consumers (e.g., a cross-domain orchestrator [13])
can also request access to monitoring data through the Domain

Manager APIs. These requests are subject to administrative
policies (e.g., providing only aggregated infrastructure util-
isation instead of edge-level information). The Admission
Control and Service Lifecycle Manager are responsible for
deploying the configurations across the various edge nodes.

Listing 3. Description of a network deployment intent extracted from Listing 1
1 {
2 "deployment_id": "338d10a2-2669-46e1",
3 "services": [
4 {
5 "name": "CNF-1",
6 "endpoints": [{
7 "host": "svc1", "port": 80, "protocol": "HTTP"
8 }],
9 "links_to": [{

10 "name": "CNF-2", "type": "intra-edge"
11 }]
12 },
13 {
14 "name": "CNF-2",
15 "endpoints": [{
16 "host": "svc2", "port": 80, "protocol": "HTTP"
17 }],
18 "links_to": [{
19 "name": "CNF-1","type": "intra-edge"
20 },{
21 "name": "CNF-3",
22 "type": "cross-domain",
23 "resolution": {
24 "domain": "Domain-Y", "fqdn": "yyy.yyy.yyy.yyy"
25 }
26 },{
27 "name": "CNF-4", "type": "inter-edge"
28 }]
29 },
30 {
31 "name": "CNF-4",
32 "endpoints": [{
33 "host": "svc4", "port": 80, "protocol":"HTTP"
34 }],
35 "links_to": [{
36 "name": "CNF-2", "type": "inter-edge"
37 }]
38 }]
39 }

F. Domain Manager

The Domain Manager serves as the only point of contact for
external entities. It provides the following capabilities using its
northbound API endpoints:

• Advertises the available services and configurations of the
blueprint repository as well as the total reserved resources
to trusted external users or higher-level orchestrators.

• Receives deployment and termination intents, translating
the relevant segments of these requests to the APIs of
the Orchestration Manager’s service LCM and network
management components.

• Creates the topological linear ordering for the deploy-
ment.

• Manages authorisation and authentication for northbound
endpoint calls.

• Discovers external domain network information (e.g.,
FQDN) in cooperation with other Domain Managers.

• Queries monitoring data from the Monitoring service.
• Responds to external health-check requests.

G. Network Manager

The Network Manager entity enables a programmable
communication fabric across services. Establishing the fabric
begins after the Network Manager receives the connectivity
configuration details extracted from the deployment intent.
Such configuration may include topology directives, policy en-
forcement rules, failover mechanisms, and security constraints.



Fig. 3. Service Mesh deployment (as in Listing 1) of a network function
chain placed between two different administrative domains.

CAMINO leverages the Service Mesh paradigm, which
abstracts inter-service communication by providing a control
plane that accepts high-level declarative definitions, translating
them into low-level network configuration, and injecting them
into a data plane that spans the target services. Such abstraction
simplifies various connectivity configurations such as: 1) In-
tra-edge: The minimum required connectivity configuration
within a single cluster. 2) Inter-edge: Connectivity across
multiple clusters within the same network domain. 3) Cross–
domain: Connectivity across different administrative domains
using CAMINO or a compatible solution.

Upon receiving the deployment intent, the Domain Manager
extracts the deployment information (i.e., the associated pack-
ages and topology) and forwards it to the Orchestration Man-
ager. Then, the Network Manager generates and implements
a service mesh configuration based on the brokering plan that
distributes the services to Edge nodes. An example is found
in Listing 3. This information is used to hydrate blueprint
network configuration files stored in the edge deployment
repositories and deployed in the edge clusters.

Fig. 3 illustrates an example service mesh deployment based
on the deployment intent of Listing 1. Each Edge Node has its
own Service Mesh Control Plane that injects and configures a
Service Mesh Proxy in each deployed CNF. For this example,
we assume that in Domain X, the Orchestration Manager as-
signs CNFs 1 and 2 to Edge Node 1, so the Network Manager
needs to establish intra-edge communication between the two
CNFs. CNF 4 is assigned to Edge Node 2; thus, inter-edge
communication between CNF2 and CNF4 is required. Do-
main Y hosts CNF3, so cross-domain communication between
CNF2 and CNF3 is necessary. For cross-domain discovery, the
Network Manager can either receive the remote domain FQDN
from an end-user, request this information from a trusted cross-
domain orchestrator, or maintain a list of trusted domains
within the Domain Manager.

IV. IMPLEMENTATION

This section describes the tools and solutions used or
developed that enable E2E service deployments. In our setup,

all nodes -both management and edge- are considered to be
Kubernetes clusters with a MetalLB load-balancer, Calico as
a Container Network Interface, and Nginx as the Ingress
Controller. It is important to note that other solutions are ac-
ceptable, provided they comply with CAMINO’s architecture.

A. Orchestration and Domain Management

The package repositories are managed by GitLab, chosen
due to its open-source nature and privacy preservation (i.e.,
local deployment). Our package manager of choice is kpt [14],
used for automated authoring and manipulation of Kubernetes
Resource Model (KRM) packages, e.g. [15]. Kpt was selected
over Helm as it natively integrates with CaD and GitOps
workflows. Additionally, it treats upstream packages as im-
mutable artefacts with “pull” and “customisation” operations
being separate steps. This prevents local changes from being
overwritten, making updates easier to manage.

Kpt introduces functions (e.g., setters) that enable CRUD
operations on blueprint packages using IESD descriptors. All
blueprint packages are described with parameterised, cus-
tomisable fields in the form of comments within the defined
YAML manifest. These comments dictate the parameters
that can be manipulated such as metadata (e.g., namespaces,
names, labels), spec (e.g., images, resources, selectors) and
others. All parameters are managed with IESDs in the form of
PackageVariantSets (PVSs), a custom resource (CR) managed
by porch [9]. The blueprint packages are reusable and can
become deployment packages through “hydration”. In general,
porch handles creating, deleting, and maintaining the blueprint
and deployment package repositories within GitLab, register-
ing all repositories across management and edge nodes, and
generating and deploying porch-compliant CRDs.

The Package Orchestrator (developed in Python 3.11) wraps
around kpt and porch, automating the creation and manage-
ment of PVSs, kpt function manipulation, and the storage or
retrieval of all packages. The Domain Manager (developed in
Python 3.11) handles creating, deleting, and maintaining the
blueprint and deployment package repositories within GitLab
and triggers the registration of new repositories across all
management and edge clusters. Upon receiving a deployment
intent and generating a topological order, the intent JSON is
sent to the Deployment Service (developed in Python 3.11).
This service combines the Service Lifecycle Manager and the
Admission Controller functionality. It handles package deploy-
ment proposals and approves them under certain conditions
(e.g., if no misconfiguration exists, or if enough resources are
available for a deployment). Misconfigurations are checked by
“dry-running” the updated/hydrated packages and evaluating
the response of the edge nodes. Resources are queried from
the Monitoring Service (both workload and infrastructure
resources) or directly from the Kubernetes API if it concerns
cluster or network configuration resources.

A package approval triggers porch to push the package to
a deployment repository. Later, the Reconciliation Manager
of each edge node handles the package deployment using
the local orchestrator. Similarly, when a termination intent is



received, the Deployment Service checks whether it is possible
or if a conflict may arise and accordingly handles the termi-
nation, instructing porch to delete the deployment package,
and the reconciliator terminates the Kubernetes deployment.
As a reconciliation tool, ConfigSync [16] was chosen due to
its edge-based architecture which supports horizontal scaling
in the case of a large number of edge nodes, compared to other
solutions, such as ArgosCD, that follow a server-client model.

B. Network Management

The Network Manager (developed in Python 3.11) imple-
ments the Service Mesh paradigm leveraging Istio Service
Mesh [17]. Once a deployment is triggered by the Deployment
Service, and if communication with another deployment is
required, an Istio Envoy Proxy Sidecar is injected in each
Pod. This enables traffic management by intercepting traffic
and applying policy-based routing.

The Network Manager is responsible for generating all Istio
CRDs, adhering to CaD principles and utilising pre-existing
network blueprint packages. The CRDs created are similarly
deployed alongside the Pods across all edge nodes and are
translated by the Istio control plane into low-level Proxy
configurations. To provide isolation across deployments, we
group CNFs of a specific chain into Kubernetes Namespaces
and create and apply network policies using and adjusting
pre-existing blueprint packages. Finally, we consider three
different connectivity configurations: 1) Intra-edge: Lever-
aging the Virtual Service (VS) and Destination Rule (DR)
CRDs to implement network policies, such as load balancing.
2) Inter-edge: Istio’s model for individual multi-cluster con-
trol planes simplifies inter-edge service discovery and enables
high availability using the VS, DR and Service Entry CRDs
for remote service reachability. Additionally, we follow the
Namespace Sameness principle to identify remote services.
3) Cross-Domain (External): Cross-network Control Planes
enable remote service discovery via the East-West Gateway
CRD, allowing clusters to expose local services on specific
ports through the domain’s External IP.

C. Monitoring

Finally, the monitoring capabilities are enabled by Thanos
and Prometheus [18] instances in each Edge Node to capture
performance data for the Edge Nodes and the services. Each
Prometheus instance in each cluster hosts a Thanos agent
as a sidecar. All agents are queried by a Thanos Querier
instance controlled by the management cluster’s Monitoring
Service (developed in Python 3.11). The Monitoring Service
requests monitoring data for each metric of interest from all
Thanos agents with a single PromQL query. This data can
then be passed to relevant data-consuming services such as
the Orchestration Manager or the Domain Manager.

Monitoring data are separated with custom labels, which are
assigned during the service deployment or cluster instantiation.
For example, the Deployment service assigns pod names a
unique identifier, and edge nodes have unique contexts and
names. The labels are exchanged between the Orchestration
Manager and the Monitoring Service using a run-time cache

(Redis was chosen for its lightweight nature and stability).
Finally, all monitoring data is stored in a data lake (using
InfluxDB) for long-term analysis and visualisation.

V. CONCLUSION

This paper introduces CAMINO, a cloud-native, au-
tonomous management and intent-based orchestration frame-
work designed to address the complexity of service deploy-
ment across multiple edge nodes leveraging the CaD principle.
Its service orchestration, network management and monitor-
ing components enable scalable, zero-touch provisioning of
heterogeneous services to meet the demands of 6G systems.
The CAMINO framework enhances the efficiency and ob-
servability of complex edge-cloud deployments. Future work
will extend its intent-based capabilities with AI-driven service
management and cross-administrative domain orchestration.
This research contributes to the advancement of autonomous
network orchestration, paving the way for scalable, resilient,
and self-managing telecommunications infrastructures.

ACKNOWLEDGEMENTS

This work is a contribution by Project REASON, a UK
Government funded project under the Future Open Networks
Research Challenge (FONRC) sponsored by the Department
of Science Innovation and Technology (DSIT).

REFERENCES

[1] T. Zhang et al., “NFV platforms: Taxonomy, design choices and future
challenges,” IEEE TNSM, vol. 18, no. 1, pp. 30–48, 2021.

[2] ETSI Industry Specification Group (ISG), “Zero-touch network and
Service Management (ZSM); Intent-driven autonomous networks,” Eu-
ropean Telecommunications Standards Institute (ETSI), Tech. Rep. GR
ZSM 011 V2.1.1, Sep. 2024.

[3] S. Moazzeni et al., “5G-VIOS: Towards Next Generation Intelligent
Inter-domain Network Service Orchestration and Resource Optimisa-
tion,” Computer Networks, vol. 241, p. 110202, 2024.

[4] G. Scivoletto et al., “Development & Reliable Orchestration of Network
Applications for the Automotive Domain Across the Edge-to-Cloud
Continuum,” in Proc. of EuCNC/6G Summit, 2024, pp. 1055–1060.

[5] P. Wyszkowski et al., “Comprehensive Tutorial on the Organization of
a Standards-Aligned Network Slice/Subnet Design Process and Oppor-
tunities for Its Automation,” IEEE Commun. Surv. Tutor, vol. 26, no. 2,
pp. 1386–1445, 2024.

[6] “ONAP,” Linux Foundation. [Online]. Available: https://www.onap.org/
[7] “ETSI OSM,” ETSI. [Online]. Available: https://osm.etsi.org/
[8] S. L. Correa et al., “Supporting MANOaaS and heterogenous MANOaaS

deployment within the zero-touch network and service management
framework,” IEEE Commun. Mag., vol. 8, no. 2, pp. 4–11, 2024.

[9] “Nephio.” [Online]. Available: https://nephio.org/
[10] A. Mohammadi and N. Nikaein, “Athena: An Intelligent Multi-x Cloud

Native Network Operator,” EEE JSAC, vol. 42, no. 2, pp. 460–472, 2024.
[11] T.-N. Nguyen et al., “A Design and Development of Operator for Logical

Kubernetes Cluster over Distributed Clouds,” in Proc. of IEEE/IFIP
NOMS, 2024, pp. 1–6.

[12] R. Bhagwan et al., “Learning Patterns in Configuration,” in Proc. of
IEEE/ACM ASE, 2021, pp. 817–828.

[13] K. Katsaros et al., “AI-Native Multi-Access Future Networks—The
REASON Architecture,” IEEE Access, vol. 12, pp. 178 586–178 622,
2024.

[14] “kpt: Automate kubernetes configuration editing.” [Online]. Available:
https://kpt.dev/

[15] “Nephio Example Packages,” ETSI. [Online]. Available: https:
//github.com/nephio-project/nephio-example-packages

[16] “Configsync.” [Online]. Available: https://github.com/
GoogleContainerTools/kpt-config-sync

[17] “Istio,” Linux Foundation. [Online]. Available: https://istio.io
[18] “Thanos monitoring.” [Online]. Available: https://thanos.io/

https://www.onap.org/
https://osm.etsi.org/
https://nephio.org/
https://kpt.dev/
https://github.com/nephio-project/nephio-example-packages
https://github.com/nephio-project/nephio-example-packages
https://github.com/GoogleContainerTools/kpt-config-sync
https://github.com/GoogleContainerTools/kpt-config-sync
https://istio.io
https://thanos.io/

	Introduction
	Related Work
	System architecture
	Deployment Intents and Packages
	Order of Deployment and Service Brokering
	Reconciliation and Deployment Configuration
	Orchestration Manager
	Admission Control and Resource monitoring
	Domain Manager
	Network Manager

	Implementation
	Orchestration and Domain Management
	Network Management
	Monitoring

	Conclusion
	References

