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Abstract—Intelligent Transportation Systems (ITSs) require
ultra-low end-to-end delays and multi-gigabit-per-second data
transmission. Millimetre Waves (mmWaves) communications
can fulfil these requirements. However, the increased mobility of
Connected and Autonomous Vehicles (CAVs), requires frequent
beamforming - thus introducing increased overhead. In this
paper, a new beamforming algorithm is proposed able to
achieve overhead-free beamforming training. Leveraging from
the CAVs sensory data, broadcast with Dedicated Short Range
Communications (DSRC) beacons, the position and the motion
of a CAV can be estimated and beamform accordingly. To
minimise the position errors, an analysis of the distinct error
components was presented. The network performance is further
enhanced by adapting the antenna beamwidth with respect to
the position error. Our algorithm outperforms the legacy IEEE
802.11ad approach proving it a viable solution for the future
ITS applications and services.

Keywords—Connected Autonomous Vehicles, mmWave,
Beamwidth Optimisation, Beamforming, Heterogeneity, MAC
layer, Vehicle-to-Infrastructure.

I. INTRODUCTION

Connected and Autonomous Vehicles (CAVs), when fully
commercialised, will provide significant user convenience
and safety as well as reduced pollution and fuel consump-
tion. Self-driving vehicles will be members of the ecosystem
of Next-Generation Intelligent Transportation Systems (ITSs).
This ecosystem will provide services such as transit man-
agement, emergency management, multi-modal commut-
ing, etc. [1]. Massive amount of data will be generated and
exchanged between the various entities of the system. As an
example, it is expected that just one self-driving vehicle will
generate more than a gigabit-per-second of sensory data [2].

The strict Quality-of-Service (QoS) constraints of the
next-generation automotive applications such as ’tactile-
like interactions’ and gigabit-per-second throughput [3] can
be effectively supported using Millimetre Wave (mmWave)
communications. However, their propagation characteristics
combined with the increased vehicle mobility lead to per-
formance degradation (e.g. due to Doppler shifts because of
misalignments [4]). To that extent, mmWave adoption for
vehicular communications require smarter ways to tackle
the problems arose. CAVs, as smart entities within an ITS
are equipped with numerous sensors and Radio Access
Technology (RAT) interfaces that combined can potentially
provide a solution to the aforementioned problems.

Based on this idea we propose a smart, network-
based mmWave beamforming strategy for Vehicle-to-

Infrastructure (V2I) links, able to reduce beam misalign-
ments under the highly dynamic vehicular networks. More
specifically, we will focus on the frequency band of 60 GHz
and how the position and direction information broadcast
can be utilised to improve the performance of a mmWave
system by enhancing its beamforming training algorithm.

Referring to IEEE 802.11ad [5], the beamforming process
requires a bidirectional frame transmission. According to [6]
the beam switching for a phased-array antenna is almost
instantaneous ('50 ns). Therefore, the beamforming delay
is entirely related with the number of frames exchanged.
To that extent, authors in [7] introduced a new codebook
design scheme able to accelerate the beam training process,
reduce the overhead and improve the system performance.
However the beam training is still performed in quasi-
omnidirectional mode. Therefore, the system cannot com-
pensate with the increased mobility due to the Doppler
Spread.

For mobile environments, more frequent beamforming
is required, increasing the training overhead. A viable so-
lution is a network operating in a heterogeneous man-
ner, exchanging the mmWave training information out-
of-band. Dedicated Short Range Communications (DSRC)
can achieve high packet delivery ratio for short distances
(≤200 m), even under urban environments [8]. To that
extent, authors in [9] designed a heterogeneous network
consisting of DSRC and mmWave RATs. Facilitating the po-
sition information sent within a DSRC beacon they predict
the movement of the vehicle and perform beamforming.
However, positioning errors were not taken into account,
vehicle speed was constant and no complex manoeuvres
were considered. On a similar approach, our algorithm can
enhance performance by fusing the position, motion and
velocity data from a vehicle.

The position information of the vehicle is most com-
monly acquired via Global Positioning System (GPS) and
is not perfect. This will lead to imperfections and slight
misalignments in our algorithm. What is more, GPS error
is not consistent as observed in the 3D space. Easting,
northing, and elevation errors might vary and will influence
differently the system. In such manner, the different GPS er-
ror components will be further analysed deriving equations
for thee sensitivity of the system on each individual error.
As shown in [10], when misalignment errors introduced
there is an optimal non-zero beamwidth that maximises



the system performance. In this fashion, and taking into
consideration the sensitivity analysis mentioned before,
equations for the beamwidth optimisation with respect to
the error will be derived.

This paper is organised as follows. In Sec. II, a detailed
explanation of the overhead computation for IEEE 802.11ad
will be given as well as the reasons that the legacy beam-
forming technique is not a viable solution for vehicular
communications. The proposed algorithm is described in
Sec. III, presenting the required models and the algorithmic
steps. The section will be concluded with the positioning
error analysis and the beamwidth optimisation problem.
Simulated and numerical results will be presented and
discussed in Section IV and the work will be concluded
in Section V, with ideas for future research.

II. TRADITIONAL BEAMFORMING WITH IEEE 802.11AD

IEEE 802.11ad is the dominant standard for mmWave
communications [5]. In the standard, the interval between
two beacon frames is defined as the Beacon Interval (BI).
BI is subdivided in two access periods. The first one, called
as Beacon Header Interval (BHI) facilitates the exchange
of management information and network announcements.
The second period is responsible for the data transmission
and is called Data Transmission Interval (DTI). BHI is
further subdivided in shorter access periods. These are:
the Beacon Transmission Interval (BTI), used for network
announcement and beamforming training, the Association
Beamforming Tranining (A-BFT) where antennas are trained
and paired with the Personal Basic Service Set (PBSS) Con-
trol Point (PCP)/AP, and finally the Announcement Trans-
mission Interval (ATI) during which management informa-
tion is exchanged with the associated stations (Fig. 1).

The propagation characteristics in the frequency band
of 60 GHz result to severe signal attenuation during quasi-
omnidirectional communications. Therefore, the MAC layer
of IEEE 802.11ad introduces the concept of "virtual" an-
tenna sectors. These sectors divide the azimuth plane into
a number of sectors, depending on the type of the device
used (e.g. a PCP/AP will utilise more "virtual" sectors than
a handheld device). These "virtual" sectors can be further
subdivided with respect to the minimum beamwidth of
the antenna creating a two-layer model representation of
the beams and the beamforming process (Fig. 1). In such
manner, the beamforming in IEEE 802.11ad is performed
in two phases exchanging a bidirectional frame sequence.

The first phase (first-layer), is called Sector Level Sweep
(SLS). SLS trains a transmitting antenna using an iterative
sweeping process based on the strongest Signal-to-Noise
Ratio (SNR). Later, during Beam Refinement Phase (BRP)
(second-layer), the receiving antenna is trained and the
beams are further refined, choosing finally a pair of beams
able to compensate with the channel losses at 60 GHz.

A. Overhead analysis of IEEE 802.11ad beamforming process

Consider a typical vehicular network with one PCP/AP on
the side of the road and a number of mobile devices trav-

elling on this road. As it was mentioned before, most of the
waisted time comes from the training frames exchanged.

The SLS is executed during BTI and A-BFT in four steps
(Fig. 1): 1) The initiator transmits one directional training
frame per sector while the receiving devices (responders)
listen in quasi-omnidirectional mode. 2) The responders
reply with a directional frame throughout all their sectors.
3) Feedback information is transmitted from the initiator
with the Sector Sweep Feedback (SSW-FB) frames and 4)
is acknowledged by the responders with the Sector Sweep
Acknowledges (SSW-ACKs). When more than one stations
exist in the coverage region of PCP/AP, the slotted A-
BFT introduces a contention-based response period with
values between U (4,8) based on a uniform random dis-
tribution [5]. Allocating one slot per station, more than
one devices can respond to the beacon sweep reducing the
collisions of RX-SSW frames. The total time required for a
SLS can be calculated as:

TSLS = K ·TT X−SSW +N · (K ·TR X−SSW +TSSW −F B/AC K )+TI F S

(1)
where TT X−SSW , TR X−SSW , TSSW −F B and TSSW −AC K are the
required time for the different frames exchanged, K is the
number of "virtual" sectors (in this case, same number was
assumed for all the devices), N is the number of stations
around the PCP/AP and TI F S is the total interframe spacing
time and is equal to TI F S = (N+1)(K −1)·TSB I F S+3·TMB I F S .

During the BRP phase, multiple configurations can be
tested with one frame transmission, reducing the overhead
compared to SLS. BRP can be divided in two subphases.
At first, the best RX antenna sector is found by exchanging
BRP frames appending transmit and receive training fields
(TRN-TX/RX) and followed by a feedback frame and an
acknowledgement. The time required is given as follows:

TR X = 2 ·TBRP +TBRP−F B +TBRP−AC K +3 ·TSI F S (2)

By the end of the above process, a pair of "virtual" antenna
sectors is chosen with respect to the higher SNR. During
the second subphase (Beam Combining (BC)), the beams
are further refined. A set of pairwise antenna weight vector
combinations is tested between the two devices as a direc-
tional link between the devices is already established. The
time required can be calculated as:

TBC = S ·TBRP +TBRP−F B/AC K +3 ·TMB I F S +(S−1) ·TSI F S (3)

where S is the number of antenna weight vector com-
binations tested. Finally, the total time required for the
beamforming process is as follows:

Tal l = TSLS +TR X +TBC +2 ·TSI F S (4)

This section introduced an approximation of the time
required for the beamforming process of N number of
devices. However, a perfect channel with zero frame loss
was considered and BRP can be more complicated (e.g. a
BRP setup subphase might be required if BRP does not
follow an SSW-ACK). Therefore, the above equations can
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Fig. 1. The Beacon Interval and the two-layer beamforming: An example of two stations participating in the beamforming process. The frames
exchanged, the interframe spacing and the intervals that each phase requires.

give a rough approximation of the minimum time wasted
from the beamforming process of IEEE 802.11ad.

B. Limitations of IEEE 802.11ad with vehicular networks

As described in the standard, the BI length is limited to
1000 ms [5]. With respect to the surrounding environment,
the length can be optimised to achieve the best per-
formance. Longer intervals increase throughput reducing
the management frame transmission, however the system
becomes intolerant to the delay spread. Misalignments
between the TX and RX antennas can lead to more severe
delay spread and consequently degradation in the perfor-
mance. A typical BI length for indoor environments (zero
or low mobility) is around 100 ms. However, for moving ve-
hicles more frequent beam switching is required (<30 ms).

As described before, the bidirectional exchange of train-
ing frames increases the overhead delay. Shorter BIs will
lead to a bigger portion of the interval being waisted
for beamforming. Additionally, increasing the number of
vehicles within the coverage region of a Road Side Unit
(RSU) will lead to more collisions and consequently less
trained antennas. An example of the overhead delay can be
seen in Fig. 2. More than one-third of the BI is misspent
for beamforming under a vehicular scenario reducing the
system throughput.

The strict Quality-of-Service (QoS) requirements for the
next-generation automotive applications require tactile-like
end-to-end delays (<10 ms) and as shown (Fig. 2), IEEE
802.11ad cannot compensate with that. To that extent, we
introduce a new beamforming approach not relying on the
in-band information exchanged. Achieving overhead-free
beamforming, it will be able to improve the performance
and prove the capacity required for a viable solution for
vehicular communications.

III. HETNET DSRC/MMWAVE BEAMFORMING FOR ITSS

Leveraging from the position and the motion information
broadcast with DSRC beacons, our algorithm can provide an

4 5 6 7 8
Number of A-BFT slots

5

6

7

8

9

10

11

12

T
im

e
 (

in
 m

s
)

1 vehicle
5 vehicles
10 vehicles
15 vehicles

Fig. 2. Example of the average delay introduced every BI from legacy
beamforming training. 16 "virtual" antenna sectors were used for both TX
and RX antennas and a different number of vehicles was considered.

overhead-free beamforming. With zero-overhead, the asso-
ciation delays can be minimised, the beam misalignments
are reduced and the performance of a mmWaves network
can be enhanced. The algorithm operates as shown in Fig. 3.

Briefly, when a vehicle approaches a RSU, prepares a
bundle of information consisting of its estimated position,
its motion data (based on the vehicle motion dynamics)
and its velocity. These information encapsulated in a DSRC
beacon are broadcast to the nearest RSUs. The information
are updated periodically and broadcast every 100 ms (DSRC
beacon interval [8]).

On the RSU side, when the initial beacon is received,
the RSU aligns its beam with the vehicle according to
the estimated position. When a new beacon arrives, it is
examined whether the position of the vehicle has changed.
If so, the beams are realigned appropriately based on the
new position. Otherwise (if the beacon is lost or the position
is not updated), the new position is predicted based on the
received motion data.

A. Position error and Mobility Model

The position of a vehicle is estimated with respect its
GPS coordinates. GPS receivers introduce a position error.
As shown in [11], the mean error value is ~3 m and the stan-
dard deviation is ~1 m. These values were measured for very
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large regions consisting of different kind of environments.
Subject to urban scenarios specifically, the effect of an
urban canyon appears due to the height of the building and
GPS errors tend to become worse. Recent studies though,
showed that combining the motion data with the position
information with means of data fusion algorithms, can
significantly reduce the position error. An example can be
found in [12], where authors presented an enhanced posi-
tioning system able to achieve a few-centimetre accuracy
under urban scenarios, proving this positioning system as
a viable solution for future autonomous vehicles.

A mobility model that can accurately characterise an
urban scenario with average road density, is the synchro-
nised flow traffic model [13]. Vehicles follow a continues
traffic flow and their velocity is averaged over a mean
value ~vav g following a Normal distribution ~v ∼N ( ~vav g ,2).
No significant stoppages occur and the vehicles, being
limited within the road boundaries, tend to synchronise
their movement performing a random manoeuvres (change
lanes, brake/accelerate smoothly).

B. Beam Alignment Model based on Motion Prediction

The estimated position is affected by the additive GPS
error, i.e. Epos =Cpos +eGPS , where Cpos is the real position
of the vehicle and eGPS ∼ logN (µ,σ2

v ) is the log-Normal
error. µ and σv are the non-logarithmetised values for
the mean and the variance of the log-Normal distribution.
When the beam alignment is based only on the estimated
position (e.g. initial beacon received), the angle k° with
respect to the reference plane is calculated (using the
trigonometric equations for the right-angled triangles) and
then the beam is steered accordingly (Fig. 4a).

For the case that no new beacon is received or the
position data are outdated, the motion of the vehicle is
predicted based on the motion sensory data. CAVs can be
equipped with numerous sensors such as magnetometers,
gyroscopes, and accelerometers. Their sensory data can be
combined with data fusion algorithms, representing the an-
gular speed of a vehicle. The angular speed is decomposed
into three distinct axis, i.e. yaw ωy for the vertical-axis, pitch
ωp for the transverse-axis, roll ωr for the longitudinal-axis.
The above represent the rate of the angular displacement
around these axis per unit time (measured in deg°/s).
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Fig. 4. a) GPS error analysis and how it influences the outage interval.
Beam is steered based on the GPS trajectory. b) Motion of vehicle within
a time interval used for predicting the new position.

Consider a constant angular velocity. A vehicle in the
real world follows the surface of a sphere within one time
interval. However, a vehicle moving on a road within a short
period of time can only significantly change its direction
on that road plane. Therefore, the road and the vehicles
will be considered as 2D objects and the movement of
the vehicle will occur only on the azimuthal plane. For
constant velocity a vehicle will follow the perimeter of
a circle (Fig. 4b). The distance between A and B is the
distance travelled within a unit of time. This distance, as
well as the angle βpr ° can be calculated as follows:

βpr ° = mÙAB = 2 ·ωy · tpr lÙAB pr =~v · tpr (5)

where tpr is the time elapsed from the latest received
beacon. Using the circle properties and the outcome of
equation 5, the radius of the circle and the chord length
between A and B can be defined as follows:

Rpr =
180° · lÙAB pr

2πωy tpr
AB pr = 2 ·Rpr · sin

(
ωy · tpr

)
(6)

where Rpr is the radius of the circle and AB pr is the
distance between points A and B . Finally, the predicted
position Ppos is given as:

Ppos (x, y) =
{

Ppos (x) = Epos (x)+ AB pr · sin
(
βpr °

)
Ppos (y) = Epos (y)+ AB pr ·cos

(
βpr °

) (7)

The model can be easily transformed to a 3D scenario,
by modifying equations 5, 6 and 7 to fit a spherical object.

C. Relation between position error, beamwidth and velocity

Consider a scenario where a number of RSUs are placed
at the side of the road and one vehicle performing a
movement as in Fig. 5. In an ideal scenario with zero
position error, the beamforming algorithm presented can
achieve the maximum system performance with no outages
(perfect prediction of the motion). However, GPS devices are
imperfect and will lead to outage interval. The total time
that a vehicle travels within the beam (coverage interval) is
proportion to the beamwidth and the velocity and can be
expressed as a function of them T (~v ,θ°) (Fig. 4a).
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Fig. 5. Vehicle performs a random movement on the road. Beam misalignments occur due the position error and the individual error components
affect the misalignment differently. The movement of the vehicle is projected on a straight line.

Distinct errors will affect the system differently. For any
given position error, there will be an interval that there
is outage. The length of that interval is related with the
position error and is minimised when it is zero. However,
zero error cannot be achieved in real-world systems. The
GPS error, as shown in [11], can be decomposed into (xe , ye )
error components (easting and northing). Each individual
errors, with respect to the RSU position, will influence the
system in a different way. For example, in Fig. 4a, the xe

will cause a more significant outage than the ye .
For non-consistent position errors, an analysis of the

influential error components is required. Based on this
analysis, severe performance degradations can be prevented
either utilising different network topologies or developing
error correction algorithms. For example, for a given non-
zero error causing misalignments, there is always an op-
timal non-zero beamwidth with regard to this error that
maximises the system performance [10].

D. Antenna Gain and Beamwidth Relationship

To maximise the performance with respect to the
beamwidth, an antenna model forming a relationship be-
tween the gain and beamwidth should be derived a first.
In this work, an ideal beam is assumed with uniform gain
and no sidelobes. This model can be easily replaces with
a better approximation for a specific type of antennas,
to achieve more accurate results. The directivity of an
antenna, associated with the beam solid angle ΩA is given
as follows [14]:

D = 4π

ΩA
(8)

For this ideal beam representation, ΩA can be approximated
as ΩA ≈ θ1rθ2r where θ1r and θ2r are the half-power (−3 dB)
beamwidths (in radians) of the elevation and azimuthal
polarisation planes respectively.

The antenna gain G can be given as [14]:

G = ηD (9)

where η is the efficiency of the antenna associated with the
antenna aperture. For an ideal antenna, the efficiency is

equal to 100% and the gain becomes equal to the directivity.
What is more, for an ideal beam θ1r = θ2r . So, from the
above, the equation for the antenna gain with respect to
the beamwidth θ (measured in degrees) becomes as:

G = 4 ·1802

θ2π
(10)

E. Signal-to-Noise Ratio and Link Budget Analysis

The received SNR for the above antenna can be expressed
as the ratio of the received power Pr x over the noise power
Pnoi se . The received power is given as follows [15]:

Pr x = Pt x +Gt x +Gr x −PL (11)

where Pt x is the transmitted power and Gr x and Gt x are
the antenna gains for the receiver and the transmitter re-
spectively. For this model, both antennas have ideal beams
and the same beamwidth, therefore both antenna gains are
equal Gt x =Gr x . Finally, PL is the path-loss component and
is defined as:

PL = 10 ·n · log10 d +SF +Cat t + Aat t +Rat t (12)

where n is the path-loss exponent and d is the distance
separation between the RSU and the vehicle. SF is the
random shadowing effect following a log-Normal distri-
bution SF ∼ logN (0,σ2

SF ), with σ equal to 5.8 [16]. Aat t

and Rat t are the average atmospheric and rain attenuation,
respectively. Finally, Cat t is a constant, representing the
channel attenuation for a LOS link in an urban environ-
ment, measured at 20 m [15]. For this model, a LOS link is
always assumed.

The Pnoi se can be calculated as:

Pnoi se = N f loor +10log10 B +N F (13)

where N f loor is the noise floor value, N F is the noise
figure, and B is the antenna bandwidth. The antenna gain
is associated with the beamwidth as described in Sec. III-D.
The distance between the RSU and the vehicle changes
over time. For a given time t , the estimated position of the
vehicle is known and the distance can be easily calculated.



Therefore, the SNR can be expressed as a function of the
beamwidth and the time as follows:

SN R(t ,θ°) = Pr x (t ,θ°)

Pnoi se
(14)

The rest of the variables are always considered as con-
stant for this model.

F. Sensitivity analysis for individual error components

The instantaneous channel capacity for a given
beamwidth and time can be calculated from the Shannon-
Hartley theorem as follows:

C (t ,θ°) = B · log2(1+SN R(t ,θ°)) (15)

With regard to the prediction model introduced, the beam
is steered when the vehicles reaches the edge of the beam.
The interval between two beam realignments is the time
between ti (the system switches to the i th beam) and ti+1

(the beam is realigned). For each ti , a position Pi exists
being the real position of the vehicle (Fig. 5).

Consider the same scenario as before (Sec. III-C). Even
though the vehicle performs a curved movement (Fig. 5), in
the long-term tends to fend off the starting point, oscillating
with respect to the x-axis. Given that only the position
error exists (other sensors feedback ideal values), the real
movement of the vehicle will be identical with the one
predicted but shifted on the two axis. To that extent, the
movement within the time interval [ti , ti+1] is assumed to
be a straight line. In contemplation to that, the data rate
for a given θ° and a time interval [ti , ti+1] can be calculated
as:

Di (t ,θ°) =
∫ ti+1

ti

B · log2(1+SN R(t ))d t (16)

However, due to the position error, the beamforming
timing will be imperfect leading to outages. The two error
components be calculated as follows:

Pe (xe , ye ) =
{

xe = xest −xr

ye = yest − yr
(17)

where (xr ,yr ) is the real position of the vehicle and
(xest ,yest ) is the acquired estimated position. Both errors
can be divided in two cases: 1) when xe ≥ 0 and xe < 0 and
2) when ye ≥ 0 and ye < 0. For example, if xe > 0 ⇒ xest > xr ,
meaning that the beam steering will be delayed creating an
outage. Therefore, the moment of the i th beam alignment
is given as:

t̂i =
√

((Pi x −P0x )+xe )2 + ((Pi y −P0y )+ ye )2

~v
(18)

and so, the data rate (equation 16) should be calculated
for the portion on the interval that the beam is aligned
[t̂i , t̂i+1]. The above are valid only when there is at least a
very short interval where there is no outage. In the case of
total misalignment, the data rate is equal to zero.

Assuming that the error components are not so severe
to cause total misalignment, their impact on the system

performance can be analysed. Differential sensitivity anal-
ysis [17] was used, meaning that the sensitivity coefficient
U for a particular independent variable is calculated from
the partial derivative of the dependent variable with respect
to the independent variable. For a predefined beamwidth
and denoting one of the errors as constant, the relationship
of the individual uncertainty component with the channel
capacity for the i th beam can be calculated as follows:

Ui (e∗) = ∂Di (t |e∗,θ°)

∂e
= ∂

∂e

∫ t̂i+1

t̂i

B · log2(1+SN R(t ))d t (19)

The formula of the channel capacity within the integral
in equation 16 has an anti-derivative. To that extend, and
denoting it as c(t ), can be calculated using the fundamental
theorem of calculus:

Di (t |e∗) =
∫ t̂i+1

t̂i

c(t )d t =C (t̂i+1)−C (t̂i ) (20)

Now, using the chain rule for the partial derivative (equa-
tion 19) we have:

Ui (e∗) = ∂Di (t |e∗)

∂e
=C ′(t̂i+1)

∂(t̂i+1)

∂e
−C (t̂i )

∂(t̂i )

∂e
(21)

The above equations can be numerically evaluated cal-
culating the sensitivity coefficient for both the error com-
ponents xe and ye . Analysing the individual errors before
developing a new ITS can significantly enhance the sys-
tem performance. The impact of systematic errors can be
confined to maximise the performance. This can be done
by many ways. For example, changing the position of the
infrastructure RSU devices, a system will easier compensate
with these errors. Another solution is the development of
correction algorithms able to tackle specific errors. For
this work, a 2D representation was used for our system.
GPS northing and easting error will not have significant
differences in a real-world system. However, the same
analysis can be applied to a 3D system as well, where the
errors between the azimuth and the elevation plane have
significant differences [11].

G. Beamwidth Optimisation

Nevertheless, reducing the influence of the position error
will increase the system performance. However, any exist-
ing error will always lead to an outage. To increase the
performance even more, the optimum beamwidth will be
calculated for an a priory known error. Pe is a random
variable, so for the long-term average value, the maximum
data rate argmax

θ°
Di (t ,θ°|Pe ) can be given as the expectation

of the data rate denoting that it is averaging over Pe :

θ̂° = argmax
θ°

EPe [Di (t ,θ°)] (22)

Pe is decomposed in xe and ye which are both continu-
ous random variables. Therefore, EPe [·] is a positive linear
function and the equation 22 can be rewritten as:

θ̂° = argmax
θ°

Exe [Di (t ,θ°)]+argmax
θ°

Eye [Di (t ,θ°)] (23)



Denoting f (xe ) and f (ye ) as the probability distribution
functions for xe and ye respectively, the two expected values
can be calculated as:

Exe [Di (t ,θ°)] =
∫ ∞

−∞
Di (t ,θ°) f (xe )d xe (24)

Eye [Di (t ,θ°)] =
∫ ∞

−∞
Di (t ,θ°) f (ye )d ye (25)

However, the above equations should be limited to con-
sider only the interval that there is no outage. Therefore, to
properly calculate the expected value of the data rate over
the Pe , the limits should be updated accordingly.

Total misalignment happens when the magnitude of the
Pe is greater than the distance from one edge of the beam
to the other. In the time domain this can be expressed as
t̂i > ti+1 ⇔ ∥∥P̂i

∥∥/~v > ‖Pi+1‖/~v for xe < 0 and ye ≥ 0 and
ti > t̂i+1 ⇔ ‖Pi‖/~v > ∥∥�Pi+1

∥∥/~v for xe ≥ 0 and ye < 0. From
the above it can be calculated that the total misalignment
conditions are:

xe =
{

xe > Pi +Pi+1, for xe ≥ 0

xe < Pi+1 −Pi , for xe < 0
(26)

ye =
{

ye > Pi +Pi+1, for ye < 0

ye < Pi+1 −Pi , for ye ≥ 0
(27)

So, using the above limits we have:

Exe [Di (t ,θ°)] =
∫ Pi+Pi+1

0
Di (t ,θ°|xe ≥ 0) f (xe )d xe

+
∫ 0

Pi+1−Pi

Di (t ,θ°|xe < 0) f (xe )d xe

(28)

Eye [Di (t ,θ°)] =
∫ Pi+1−Pi

0
Di (t ,θ°|ye ≥ 0) f (ye )d ye

+
∫ 0

Pi+Pi+1

Di (t ,θ°|ye < 0) f (ye )d ye

(29)

The above equations can be numerically evaluated and
the optimum beamwidth can be found for a given position
error.

IV. SIMULATIONS AND NUMERICAL ANALYSIS

Consider a scenario where a vehicle travels on a road
section with four lanes and a lane width of 3.5 m. The dis-
tance travelled is one road block rb length and the vehicle
moves with random motion, as described in Sec. III-B, and
constant speed.

In Fig. 6, the average network throughput is presented for
different GPS errors and velocities. Based on the sensitivity
power levels stated in IEEE 802.11ad [5], we used different
Modulation and Coding Schemes (MCSs) with respect to the
SNR. The system performance for a mean error of 3 m is
comparable with IEEE 802.11ad. However, when the error is
reduced our algorithm significantly outperforms the legacy
beamforming technique.

Using the equations in Sec. III-F, the influence of each
individual error component was evaluated. For each error

TABLE I
LIST OF SIMULATION PARAMETERS.

Parameter Value

Carrier Frequency fc 60 GHz

Bandwidth B 2.16 GHz

Path-Loss Exponent n 2.66

Atmospheric Attenuation Atmat t 15 dBkm−1

Rain Attenuation Rai nat t 25 dBkm−1 (in the UK)

Channel Attenuation C hat t 70 dB [15]

Transmission power Pt x 10 dBm

Road Block Length rb 40 m

Noise Figure N F 6 dB

Noise Floor N f loor −174 dBm

BI IEEE 802.11ad 30 ms

DSRC beacon interval 100 ms

GPS update interval 1000 ms

taking random values, the other one is considered as
constant. With respect to Sec. III-F, each error can take
either positive or negative values and as shown in Fig. 4a
and it has a mean absolute distance from the real position.
Therefore, the constant error consider equal to zero for each
case. During this scenario, a vehicle travelling with constant
speed was considered (14 ms−1) on the same road section
as before. As it can be seen from Fig. 7, even though both
errors have the same magnitude, the error on the x-axis
influences more the system performance than the one on
the y-axis. Analysing an a priory known position error for
a specific road and knowing the affect of each component
is very important for the initial planning of an ITS. With
better design, will be able compensate with different kind
of errors, achieving better performance and enhancing the
road safety.

Finally, Fig. 8 presents the average channel capacity and
the optimum beamwidth for each error. The results are
compared with the ideal case, where the estimated position
matches the real one, i.e. zero-error exists. A mean error of
3 m was considered for this scenario. As shown, when θ°
tends to zero, even the smallest error can cause a total
misalignment - thus, degrading the performance. On the
other hand, when θ° is large, the SNR is decreased leading
to lower channel capacity. An optimum beamwidth exists
that is different for each position error, which maximises
the average channel capacity and is shown as a circle for
each case. To that extent, the system can be fine-tuned for
a given error to achieve the maximum performance.

V. CONCLUSIONS

In this paper, an intelligent beamforming training mech-
anism was presented. The proposed strategy can achieve
overhead-free beamforming by exploiting the out-of-band
information of a CAV, broadcast with DSRC beacons. Based
on the position and the motion information, an agile
motion-prediction model capable of estimating the position
of the CAVs and predicting their movements was presented.
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Fig. 7. Differential Sensitivity Analysis of the individual position errors.

What is more, the position error and how it affects the
system behaviour was analysed. It was shown that distinct
error components can differently affect the performance
and they should be taken into consideration when planning
an ITS. For example, the system can compensate with
these errors either physically, by changing the position of
the network devices, or with means of error correction
algorithms that tackle these individual errors. An error
compensation algorithm was presented later. As it was
described, when position error exists, there is always an
optimum beamwidth between the extreme values that max-
imises the system performance.

Results showed that our algorithm can outperform the
legacy beamforming technique of IEEE 802.11ad. To that
extent, this algorithm can be a viable solution for the
beamforming training of the mmWave antennas of the
future ITSs. In the future the blockage effect, Vehicle-to-
Vehicle (V2V) communications and a 3D representation of
the system will be examined.
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