
Securing Synchronous Flooding Communications: An
Atomic-SDN Implementation

Charles Lockie
Ioannis Mavromatis
Aleksandar Stanoev

Yichao Jin
{Charles.Lockie,Ioannis.Mavromatis}@toshiba-bril.com

{Aleksandar.Stanoev,Yichao.Jin}@toshiba-bril.com
Bristol Research and Innovation Laboratory (BRIL),

Toshiba Europe Ltd.
Bristol, UK

George Oikonomou
G.Oikonomou@bristol.co.uk

Electrical and Electronic Engineering
University of Bristol

Bristol, UK

ABSTRACT
Synchronous Flooding (SF) protocols can enhance the wireless
connectivity between Internet of Things (IoT) devices. However,
existing SF solutions fail to introduce sufficient security measures
due to strict time synchronisation requirements, making them vul-
nerable to malicious actions. Our paper presents a design paradigm
for encrypted SF communications. We describe a mechanism for
synchronising encryption parameters in a network-wide fashion.
Our solution operates with minimal overhead and without com-
promising communication reliability. Evaluating our paradigm on
a real-world, large-scale IoT testbed, we have proven that a com-
munication layer impervious to a range of attacks is established
without sacrificing the network performance.

CCS CONCEPTS
• Networks→ Link-layer protocols; Network experimenta-
tion; • Security and privacy→ Security protocols.

KEYWORDS
IoT, Synchronous Flooding, Wireless Security, Bluetooth, CCM
ACM Reference Format:
Charles Lockie, IoannisMavromatis, Aleksandar Stanoev, Yichao Jin, andGeorge
Oikonomou. 2022. Securing Synchronous Flooding Communications: An
Atomic-SDN Implementation. In Proceedings of International Conference
On Embedded Wireless Systems And Networks (EWSN ’22). ACM, Linz, AT,
6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The Internet of Things (IoT) describes the network of intercon-
nected physical objects [14]. Wireless connectivity has become a
driving force for IoT deployments and their stable operation. Wire-
less devices, such as sensors, actuators or controllers, can operate

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EWSN ’22, October 03–05, 2022, Linz, AT
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

independently and communicate with each other and the wider
Internet, forming huge distributions of networks [4].

A core technology in wireless networking is flooding [7]. Net-
work flooding is a pattern of communication where a message from
one device is re-broadcasted to all other devices until it reaches the
furthest device in the network. IoT devices are typically low cost,
low power and resource-constrained [6]. Thus, lightweight com-
munications are crucial in IoT deployments. Synchronous Flooding
(SF) [5] protocols enable rapid network flooding while solving the
collision and scheduling problems from traditional flooding [7].
Facilitated by Concurrent Transmission (CT), multiple synchro-
nised devices simultaneously transmit the same message to their
neighbours, allowing for rapid flood propagation across networks.

SF protocols have been proven to improve reliability, reduce
latency and outperform traditional multi-hop mesh network proto-
cols [17]. However, a significant factor limiting the broader adoption
of SF protocols is the lack of security features. Addressing these
limitations will be the focus of this paper. In this work, we present
a design paradigm for encrypted SF communications. The unique
characteristics of secure SF will be considered and demonstrated
on an existing SF protocol called Atomic [1].

Secure flooding communication have been considered in the
past [9, 18, 19]. These works, even though not strictly SF-related,
describe how reusing the given sequence numbers (used to syn-
chronise the nodes) can be used to run replay attacks. They also
present counter-measurements for preventing them. To the best of
our knowledge, no other works have proposed solutions for secure
SF protocols. Building on top of the SF mechanisms introduced in
Atomic, we intend to introduce the various challenges identified
and provide solutions around them.

Security implementations can be found in other wireless proto-
cols in the IoT literature. For example, Bluetooth Mesh [10] protects
against trash-can attacks using multiple keys and a multi-layer
security. Furthermore, the protocol’s sequence numbers and an Ini-
tialisation Vector (IV) are utilised to protect against replay attacks.
Similarly, our approach is based on multipart IVs and encryption
keys to ensure protection against these attacks. Bluetooth Mesh,
hopping between three channels in a pre-defined sequence makes
it vulnerable to jamming attacks [10]. Atomic, employing a more
diverse channel hoping mechanism, improves resilience to interfer-
ence and can better protect against jamming attacks.

https://orcid.org/0000-0002-3309-132X
https://orcid.org/0000-0002-7299-6746
https://orcid.org/0000-0002-1684-6989
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EWSN ’22, October 03–05, 2022, Linz, AT Lockie, Mavromatis, et al.

ZigBee configures the network security from a central coordina-
tion node [11]. This node is responsible for generating master and
link keys and disseminating them to the rest of the network. Se-
quence numbers are associated with the key instances and are used
to identify them. ZigBee operates on a hop-by-hop security strategy.
Each packet received is decrypted, its integrity is verified and later
is re-encrypted and sent to the next destination. Such an operation
is prune to transport layer attacks (e.g., de-synchronisation attacks)
from an internally compromised station [12]. Our implementation
considers a double-encryption mechanism that ensures only nodes
with specific keys can access the payload of a packet.

Using an already-existing solution for Atomic is not applicable.
The problem with SF protocols is the tight time synchronisation re-
quired between the devices. All current solutions found in Bluetooth
Mesh [10], ZigBee [11] and WiFi [8] introduce increased overhead
that leads to network desynchronisation and thus reduced relia-
bility. Our solution will tackle this problem and provide secure
communications without compromising the network performance.

The rest of the paper is organised as follows. Sec. 2 describes the
SF operations, its security considerations, and the unique problems
SF communications introduce. Our design solutions addressing
these problems and our implementation are found in Sec. 3. Our
large-scale reliability evaluation of the secure SF implementation is
found in Sec. 4 and our final remarks are presented in Sec. 5.

2 SYNCHRONOUS FLOODING AND SECURITY
“Secure” networking entails encrypted and authenticated mes-
saging [16]. Encrypting data ensures confidentiality - only trusted
devices can access the original message. Authenticating data en-
sures messages cannot be tampered with, allowing receivers to be
confident in the origin of a message. As discussed earlier, the lack of
security in state-of-the-art SF protocols is very prominent in the lit-
erature. This section will briefly describe Atomic’s basic operation
and the security mechanisms introduced in our implementation.

2.1 Network Synchronisation and SF
All nodes in a CT network broadcast packets simultaneously and
on the same carrier frequency. SF, building on this idea, provides
a solution to the contention problem and can support one-to-all
communication within a single flood, minimising the latency and
enhancing reliability.

The tight network synchronisation required is achieved by syn-
chronising the clocks of all nodes. Every time a flood is received,
the nodes calculate a “reference time”, i.e., the exact value of the
initiator’s clock. A “Relay Counter (RC)” is encapsulated in each
packet, counting the number of hops within the flood. Knowing
the number of hops and that each hop takes a fixed amount of time,
nodes can calculate when the flood started and synchronise their
clocks for each transmission.

2.2 Atomic SF and Data Transfer Modes
Atomic builds on the above-mentioned ideas and provides a low-
overhead SF implementation. Multiple floods can be scheduled in
pre-defined periods called “epochs”, decoupled from the rest of the
network operation (Fig. 1). Also, each flood, described as “phase”,
has a fixed maximum number of re-transmissions (hops).

Figure 1: A time-sliced SF control to maximise network re-
source utilisation. The different data periods represent the
different core data patterns.

Figure 2: Example of SF used in Atomic. Back-to-back trans-
missions flood the network with minimal latency.

Atomic provides three core patterns (Fig. 1) for data transfer [1]:

• Point-to-point (P2P): A flood disseminates information from
one node to another, e.g., sending control instructions to
individual nodes. Other nodes participate but do not process
the packet.

• Point-to-multipoint (P2MP): The initiator broadcasts a mes-
sage to all nodes, e.g., used for IND phases or network-wide
firmware updates.

• Multipoint-to-point (MP2P): Nodes flood a message back to
a receiver (“uplink”), e.g., sensor data sent to a server from
all IoT nodes.

2.3 Network Join and Channel Hopping
Nodes joining the network require the hopping sequence and the
“reference time” to know when to expect a flood. The hopping
sequence is “seeded” by the “Epoch Counter (EC)” and controlled
by a pseudo-random generator. All Atomic epochs start with a P2MP
flood of a single packet that is called Indicator (IND) (Fig. 1). IND,
amongst other data, contains the current EC. The node initiating
the flood is called the “Initiator” (Fig. 2).

The hopping sequence poses a challenge: nodes waiting to join
will only receive the IND if they are on the same channel. A work-
around is achieved by ensuring some specific channels are “guar-
anteed to occur”. Thus, nodes listening to them will be assured to
receive the IND, determine the reference time, and successfully join
the network. Additionally, as described in Sec. 2.4, joining a secure
network requires knowledge of an IV and a key to decrypt the IND
packet. In Sec. 3.4 we describe our design considerations for that.

Securing Synchronous Flooding Communications: An Atomic-SDN Implementation EWSN ’22, October 03–05, 2022, Linz, AT

2.4 Wireless Security for SF
Two key aims of security are Authenticity and Confidentiality [23].
Authenticity aims to verify the sender’s identity, and that the mes-
sage contents not been modified. Confidentiality ensures a message
can be read or copied only by the sender and the recipient. Encryp-
tion is the process of converting message data, i.e., a “plaintext”,
into a cipher, i.e., “ciphertext”, guaranteeing confidentiality.

Data encryption is usually achieved by two methods, i.e., with
block ciphers or stream ciphers. Both are symmetric-key ciphers. A
block cipher breaks down plaintext messages into fixed-size blocks
before converting them into ciphertext using a key, while a stream
cipher breaks a plaintext message down into single bits, which then
are converted individually into ciphertext using key bits [13].

Our approach is based on the widely-adopted Counter with Ci-
pher Block Chaining-MessageAuthentication Code (CCM)mode [21],
used in a number of protocols such as Bluetooth Mesh [10], Zig-
Bee [11], and WiFi [8] (with minor variations for each). Its im-
plementation allows both authenticity and confidentiality to be
achieved with a single algorithm.

The CCM encryption is divided into two individual parts: the
Counter Mode (CTR) and the Cipher Block Chaining-Message Au-
thentication Code (CBC-MAC). The CTR is used to encrypt the
plaintext to ciphertext using a key and an incremental counter,
and CBC-MAC generates a 4 B long Message Authentication Code
(MAC) using a constant IV of zeros and a key. The MAC is appended
at the end of the packet allowing receivers to verify the integrity
of a received message. MAC is otherwise known as Message In-
tegrity Check (MIC) for Bluetooth communications. Finally, the
cipher keys used in CCM are based on the Advanced Encryption
Standard (AES) [3]. More in-depth information about the operation
of CCM-AES can be found in [13, 21].

2.5 The Challenge of Time Drifting in SF
Atomic, similarly to other SF protocols, requires all nodes to trans-
mit at the same time. Any time difference leads to overlapping
transmissions and thus destructive interference on the channel. Os-
cillator drifts observed in embedded devices (due to environmental
factors and ageing) are compensated in Atomic by synchronising a
receiving node every time it receives a hop in each flood. As time
passes after synchronisation, the drift increases. Any flood retrans-
missions must be performed while drift is below 0.5 µs. This limits
the number of times a node can transmit reliably. If the time be-
tween hops increases, the reliability decreases, leading to increased
Packet Error Rate (PER).

Moreover, AES computation takes the most signification propor-
tion of time required for CCM. As measured [15], the computation
time on hardware is 80 µs and on software is almost 20-fold larger
(1556 µs). For Atomic increasing the executing time increases the
drift and thus reduces the reliability.

2.6 IVs and Nonces
IVs are used as input to the AES block when generating a keystream.
The CCM RFC [21] specifies that the IV must be a number-once
(nonce). That implies that one IV is used to encrypt a single plaintext.
Reusing an IV results in encrypting many messages with the same
keystream, which is against the general rule of cryptography, i.e., a

Figure 3: The chosen IV structure for enabling network syn-
chronisation. Each block is 1B long.

keystream should never be used more than once. It can also lead to
ciphertext-only attacks, e.g., a many-time-pad attack.

Introducing a layer of security on top of Atomic (CCM) adds
extra overhead in the communication channels. As described in
Sec. 2.5, increased drift for larger floods reduces the reliability of
Atomic. Other wireless protocols using CCM (e.g., WiFi) include the
IV in the header sent with each packet and utilise a pre-shared key
for the decryption. The decryption starts once the packet is received.
This implies that for a AES-128 (128 bit) block cipher, an additional
16 B are added to all frame headers. Moreover, sending the IV in-
packet and decrypting after reception increases the overall time
required even further. These issues will all manifest in more desyn-
chronisations. If synchronisation between all Atomic nodes fails,
the PER will rise to 100% (total failure). Therefore, workarounds for
the above problems must be considered when securing Atomic.

3 DESIGN AND IMPLEMENTATION
As described in Sec. 2, to maintain the benefits of SF and Atomic,
we should minimise any additional overhead while maintaining the
tight synchronisation between the nodes. Furthermore, we need
to ensure the authenticity and confidentiality. In this section we
describe our design decisions that can accommodate the above.

3.1 CCM On-the-fly
As discussed in Sec. 2.5, the computation of CCM on software is
significantly longer than on hardware. Therefore, a hardware pe-
ripheral is mandatory. Based on that, our wireless interface of choice
was the Nordic nRF52840 [20]. nRF52840 provided a hardware CCM
peripheral that can asynchronously generate the keystream prior
to transmission and XORs the bits as they are sent. Similarly for
the reception, the keystream is generated by the CCM peripheral
and the ciphertext is XORed generating the plaintext message. This
allows “on-the-fly” encryption and decryption.

The CCM peripheral for Nordic nRF52840 was designed for Blue-
tooth Low Energy (BLE) [20]. As a result, it expects a specific packet
structure different from Atomic [1]. The main difference was the
lack of a 1 B control field for the frame size. Atomic, operating with
fixed payload lengths, did not require this field in its header. To
accommodate that, Atomic was extended to encapsulate the size in
the frame header.

3.2 Synchronising the IVs
CTR mode relies on a pre-generated keystream to encrypt and
decrypt packets. As discussed in Sec. 2.6, sending the IV on a per-
packet basis (like in WiFi) is not an option for Atomic. Therefore,
both transmitters and receivers must agree on the IV ahead of
time. We solve this problem by creating a multipart IV based on
the Atomic EC, RC and Phase Counter (PC), as shown in Fig. 3.

EWSN ’22, October 03–05, 2022, Linz, AT Lockie, Mavromatis, et al.

As illustrated in Sec. 2.3, all nodes synchronise the EC value in
the IND phase. Moreover, when a node participates in a flood as a
transmitter, it rebroadcasts the same packet multiple times (Fig. 2).
During this operation, a transmitter updates its RC value, reflecting
the number of re-transmissions. At the same time, the receivers
keep track of the expected RC, this being the index for the channel
hopping sequence (Sec. 2.1).

Combining EC and RC provides a unique, synchronised IV. This
IV can be later used as the key and the incremental counter re-
quired for CTR. Furthermore, EC can be preserved across hardware
restarts (e.g. by storing it in a non-volatile flash), providing a glob-
ally unique IV until the value overflows. A 64-bit EC is used in our
implementation, allowing for 264 epochs per key. Finally, in the
case multiple Atomic phases occur per epoch, the PC is additionally
included in the IV (Fig. 3).

The requirement for CCM encryption is that both the transmitter
and the receiver use the same IV. This is acceptable for Atomic P2P
and P2MP data patterns since a single message is being flooded
across the entire network. In the case of MP2P, this poses a problem.
More than one node may try and initiate a flood, each with different
payloads. This entails encrypting different payloads with the same
IV, constituting a many-time-pad attack. Our design breaks confi-
dentiality on all plaintexts encrypted using that IV. Authenticity is
still valid, as CBC-MAC does not rely on the pre-agreed IV.

3.3 Double Encryption through Device Keys
The above behaviour may be acceptable for many use cases. How-
ever, if confidentiality is required for MP2P, nodes must encrypt
their payloads separately. This could be achieved by using a “de-
vice key” known only to specific nodes. Encrypting the payload
before transmission allows packets to be flooded but not accessed
by the entire network. For example, a vendor-specific firmware up-
date could be scheduled in such a way. All nodes flood the packets
received, but only a subset with the correct keys can decrypt them.

This secondary encryption is handled by a layer higher than the
Atomic MAC (usually the application). What is more, additional
time should be provisioned for the secondary encryption. As long
as encryption and decryption occur outside the SF Atomic slot, SF
operations are unaffected.

Key provisioning is an active area of research [2]. The focus of
this paper is outside of this scope. For our implementation, we as-
signed a single shared key to all devices before our experimentation.
For a real-world implementation, a key provision and distribution
mechanism like the one found in BLE can be used to distribute new
secret keys to all devices.

3.4 Joining a Secure Network
Joining the Atomic network requires the current EC (Sec. 2.3). En-
crypting the IND flood will block nodes from receiving the current
EC and calculating the IV. To overcome that, a known constant IV
must be used, thus breaking confidentiality. For our implementation,
a constant value of 0 was chosen. This still achieved authenticity
in Atomic. The contents of the IND packet do not reveal any infor-
mation that risks security if known.

For real-world deployment, a solution for the above limitation
can be an out-of-band authentication mechanism responsible for

exchanging the EC information. This will enable a multi-factor
authentication scheme with secondary verification mechanisms
operating through a separate communication channel. An example
of such a solution can be found in [22], where a blockchain-enabled
mechanism is proposed.

3.5 Implementation Considerations
The CCM peripheral on the nRF52840 SoC can generate the key-
streams in the same amount of time taken for the radio ramp-up
(< 50 µs as described in the specification [20]). The encryption
begins as soon as the keystream generation is completed. The trans-
mission occurs as soon as the radio ramps up, coinciding with the
encryption’s commencement. Similarly, the decryption begins once
the packet’s payload portion is received. The radio peripheral gen-
erates an event once the address field has been received initiating
the decryption phase.

The peripheral is capable of supporting four bitrates, i.e., 125 Kbps,
500 Kbps, 1Mbps, and 2Mbps. These are the four bitrates supported
by Atomic, so the peripheral can support all current PHYs in our
implementation. The CCM peripheral uses the same clock source to
operate synchronously with the radio at any bitrate. If enabled si-
multaneously, the CCM operation completes concurrently with the
radio, thus allowing us to operate in the tightly time-synchronised
environment required for SF.

With regards to the packet structure, as described in Sec. 3.1,
1 B is in the header, describing the frame size and replicating the
BLE frame structure in Atomic. In addition, the CCM peripheral
introduces another 4 B of a payload extension (MIC) appended at the
end of the payload and before the Cyclic Redundancy Check (CRC).
While testing our implementation, a behaviour was observed that
when the frame size field is corrupted, the node is desynchronised. If
the corrupted value is significantly higher than the intended value,
the receiver can overrun the end of the hop, causing scheduling to
fail. We solved that by configuring a “maximum packet length” set
in the radio before the reception. This limits the receive time by
terminating the reception after a fixed number of bytes and discards
failed packets. Finally, Atomic can schedule phases knowing the
exact time required for packet transmission. These timings are
experimentally calculated as the fixed time per payload bit, plus a
constant time for the preamble, header and CRC. These constants
were measured for each PHY for the new packet structure.

4 EXPERIMENTAL INVESTIGATION
In this section, we will analyse the performance of Atomic in two
scenarios: unencrypted and encrypted traffic. Compared to other
technologies, the benefits of Atomic have already been discussed
in our prior work [17]. Our experimentation is conducted on the
UMBRELLA testbed.

The UMBRELLA testbed is installed across a ~7.2km stretch
of road (Fig. 4). UMBRELLA nodes are equipped with nRF52840
interfaces. Between the interface and the dipole antenna exists a
Skyworks RF Front-End Module, integrating a Low Noise Amplifier
(LNA) and Power Amplifier (PA). This results in 22 dB of TX power
gain, and increases RX sensitivity up to 6 dB.

At the beginning of an experiment, all nodes are flashed with
Atomic’s firmware simultaneously. Atomic was configured in P2MP

Securing Synchronous Flooding Communications: An Atomic-SDN Implementation EWSN ’22, October 03–05, 2022, Linz, AT

Figure 4: The UMBRELLA network. All nodes are installed
on public lampposts across a road of ~7.2km. The red node
is our experiment source node. The rest of the nodes are all
equipped with an Nordic nRF52840.

mode, i.e. the source node shown in Fig. 4 (initiator), floods fixed-
size packets across all nodes. Recipients count the number of suc-
cessful packets received, i.e., successful CRC and MIC, while the
source node logs the total number of packets sent. At the end of an
experiment, the experiment logs are collected on our server, where
the PER is calculated. All tests were repeated for 10 times and 3000 s
each. Atomic is configured to schedule epochs at 500ms intervals,
resulting in 6000 floods per experiment. Finally all four available
PHYs were evaluated, i.e., 125 Kbps, 500 Kbps, 1Mbps, and 2Mbps
and four different payloads, i.e., 20 B, 50 B, 100 B and 200 B.

4.1 Results and Discussion
Fig. 5 summarises our performance investigation. We compare the
perceived PER for all available PHYs, four payloads and two types
of Atomic traffic, i.e., unencrypted and encrypted. Overall, we see
that higher bitrates increase the PER. This is expected as lower
PHYs introduce forward-error-correction mechanisms and more
symbols-per-bit. What is more, a higher variance for higher bitrates
is also expected. Increased bitrate implies a shorter transmission
range and affects different parts of the network disproportionately:
nodes in dense clusters can reach many neighbours, whereas nodes
at the periphery do not. Sparse nodes experience higher PER, and
thus the increased variance. Moreover, UMBRELLA being an urban
testbed, is affected by external interference. For higher bitrates, this
effect is more prominent, introducing increased PER.

Considering the unencrypted and encrypted traffic, a general
observation is that encrypted Atomic performs slightly worse, but
overall PER distributions are broadly comparable for all PHYs. Apart
from the 500 Kbps all other results are within a ~5% margin. The
five extra bytes added to the frame lead to more corrupted bits,
increasing the PER. When considering the node locations, it was
observed that nodes close to the source present almost identical per-
formance. In contrast, nodes several hops away endure an increased
PER. The increased number of hops introduces slight desynchro-
nisation and leads to increased PER combined with the increased
overhead. Moreover, comparing the PER for the different payloads,
we can see that as the payload size increases, the variance of the
PER increases as well. This is expected behaviour. As more bits are
sent per transmission, the noisy UMBRELLA channels lead to more
collisions and, thus, more corrupted packets.

As seen, the PER difference between unencrypted and encrypted
traffic and the 500 Kbps PHY increases significantly compared to the
other PHYs. An explanation for that is the timing changes discussed
in Sec. 3.5. If these timings are marginally off, Atomic will wrongly
estimate the time taken for a TX. Our results show a PER increase

of 10%, suggesting a small timing error. Nodes at higher hop counts
will see an increased PER or total failure, whereas nodes closer
to the initiator (capable of receiving a flood in a small number of
hops) will see no reduction. We intend to recalculate these timing
constants for 500 Kbps PHY and fix this desynchronisation issue.

4.2 Benefits of Security
Secure Atomic can mitigate against several attacks. Firstly, packet
interception attacks involve listening to the communication chan-
nel, receiving anymessages sent, and decoding them. Secure Atomic
prevents that, as parties can only decipher encrypted packets with
the encryption key. Packet injection attacks involve a malicious
party sending packets as if they are a participant in the flood. This
is not possible anymore, as nodes will only be able to receive mes-
sages encrypted with the secure key, and the rest are discarded.
Even in the case of IND floods that any party can decode due to
the IV reuse (Sec. 3.4), messages must contain a valid MIC to be
received, which can only be generated if the key is known.

Packet replay attacks are also prevented. The epoch and hop
counters are synchronised network-wide and increment after every
reception. Attackers cannot modify these counters, as doing so will
invalidate the MIC. Additionally, our design specifies that an IV
associated with a key can never be repeated and persists across
hardware restarts. This prevents packet replay attacks even after
an initiator is restarted. Overall, the secure Atomic implementation
not only ensures the prevention of the above attacks but, as our
results showed, it performs similarly to the unencrypted version,
thus maintaining the benefits of SF communications.

5 CONCLUSIONS
In this paper, we presented our solution for securing Synchro-
nous Flooding communications. More specifically, we described
a mechanism for synchronising encryption parameters across an
SF network. This allows devices to prepare for encrypting and de-
crypting SF floods. Our solution accommodates all the different
traffic patterns found in a real-world scenario. We demonstrated
our solution on a large-scale real-world testbed. As seen, our mech-
anism achieves secure SF without compromising its advantages, i.e.,
speed and reliability. We observed that secure communications are
achieved, with almost identical performance to the unencrypted
implementation. This concludes that secure SF communications are
a viable solution for future IoT deployments.

ACKNOWLEDGMENTS
This work is funded in part by Toshiba Europe Ltd. UMBRELLA
project is funded in conjunctionwith South Gloucestershire Council
by the West of England Local Enterprise Partnership through the
Local Growth Fund, administered by theWest of England Combined
Authority.

REFERENCES
[1] Michael Baddeley, Usman Raza, Aleksandar Stanoev, George Oikonomou, Reza

Nejabati, Mahesh Sooriyabandara, and Dimitra Simeonidou. 2019. Atomic-SDN:
Is synchronous flooding the solution to software-defined networking in IoT?
IEEE Access 7 (2019), 96019–96034. https://doi.org/10.1109/ACCESS.2019.2920100

[2] Matthias Cäsar, Tobias Pawelke, Jan Steffan, and Gabriel Terhorst. 2022. A survey
on Bluetooth Low Energy security and privacy. Computer Networks 205 (2022),
108712. https://doi.org/10.1016/j.comnet.2021.108712

https://doi.org/10.1109/ACCESS.2019.2920100
https://doi.org/10.1016/j.comnet.2021.108712

EWSN ’22, October 03–05, 2022, Linz, AT Lockie, Mavromatis, et al.

125kbps 500kbps 1Mbps 2Mbps
Bitrate

0.0

0.2

0.4

0.6

0.8

1.0

PE
R

(%
)

(a) PER distribution for a 20B payload.

125kbps 500kbps 1Mbps 2Mbps
Bitrate

0.0

0.2

0.4

0.6

0.8

1.0

PE
R

(%
)

(b) PER distribution for a 50B payload.

125kbps 500kbps 1Mbps 2Mbps
Bitrate

0.0

0.2

0.4

0.6

0.8

1.0

PE
R

(%
)

(c) PER distribution for a 100B payload.

125kbps 500kbps 1Mbps 2Mbps
Bitrate

0.0

0.2

0.4

0.6

0.8

1.0

PE
R

(%
)

(d) PER distribution for a 200B payload.

Figure 5: PER performance distribution unecrypted and encrypted Atomic, and different payload sizes and PHYs. The dotted
boxplots (right) present the encrypted Atomic. The solid line boxplots (left) present the unencrypted experiments.

[3] Joan Daemen and Vincent Rijmen. 2002. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag. 238 pages.

[4] Jie Ding, Mahyar Nemati, Chathurika Ranaweera, and Jinho Choi. 2020. IoT
Connectivity Technologies and Applications: A Survey. IEEE Access 8 (2020),
67646–67673. https://doi.org/10.1109/ACCESS.2020.2985932

[5] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. 2011. Ef-
ficient network flooding and time synchronization with Glossy. In Proc. of
ACM/IEEE IPSN 2011. 73–84.

[6] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, Architectural Elements, and
Future Directions. Future generation computer systems 29, 7 (2013), 1645–1660.

[7] Amin Hassanzadeh, Radu Stoleru, and Jianer Chen. 2011. Efficient Flooding in
Wireless Sensor Networks Secured with Neighborhood Keys. In Proc. of IEEE
WiMob 2011. 119–126. https://doi.org/10.1109/WiMOB.2011.6085415

[8] Seyyed Alireza Hoseini, Behnam Khodabandeloo, Mahdi Jelodari Mamaghani,
Peyman Teymoori, and Nasser Yazdani. 2010. High Throughput Low Power
CCMP Architecture for Very High Speed Wireless LANs. In Proc. of Int Symp. on
CADS. 59–65. https://doi.org/10.1109/CADS.2010.5623530

[9] Ding-Jie Huang, Kai-Jie You, and Wei-Chung Teng. 2011. Secured Flooding
Time Synchronization Protocol. In Proc. of IEEE MASS 2011. 620–625. https:
//doi.org/10.1109/MASS.2011.64

[10] Evgeny Kalinin, Danila Belyakov, Dmitry Bragin, and Anton Konev. 2021. IoT
Security Mechanisms in the Example of BLE. Computers 10, 12 (2021). https:
//doi.org/10.3390/computers10120162

[11] Salam Khanji, Farkhund Iqbal, and Patrick Hung. 2019. ZigBee Security Vulnera-
bilities: Exploration and Evaluating. In Proc. of Int. Conf. on ICICS 2019. 52–57.
https://doi.org/10.1109/IACS.2019.8809115

[12] M. T. Kurniawan and Setiadi Yazid. 2017. Mitigation strategy of sinkhole attack
in Wireless Sensor Network. In Proc. of Int. Conf. on IWBIS 2017. 119–125. https:
//doi.org/10.1109/IWBIS.2017.8275112

[13] Günther Lackner. 2013. A Comparison of Security inWireless Network Standards
with a Focus on Bluetooth, WiFi and WiMAX. Int. J. Netw. Secur. 15 (2013), 420–
436.

[14] In Lee and Kyoochun Lee. 2015. The Internet of Things (IoT): Applications,
Investments, and Challenges for Enterprises. Business Horizons 58, 4 (2015),

431–440. https://doi.org/10.1016/j.bushor.2015.03.008
[15] Xinqiang Luo, Yue Qi, Yadong Wan, and Qin Wang. 2013. Overhead Model of

CCM for Industrial Wireless Network. In Proc. of IEEE HPCC 2013. 1203–1208.
https://doi.org/10.1109/HPCC.and.EUC.2013.170

[16] Stefan Marksteiner, Víctor Juan Exposito Jimenez, Heribert Valiant, and Herwig
Zeiner. 2017. An Overview of Wireless IoT Protocol Security in the Smart Home
Domain. In Proc. of IEEE CTTE 2017. 1–8. https://doi.org/10.1109/CTTE.2017.
8260940

[17] Ioannis Mavromatis, Aleksandar Stanoev, Anthony J Portelli, Charles Lockie,
Marius Ammann, Yichao Jin, and Mahesh Sooriyabandara. 2022. Reliable IoT
Firmware Updates: A Large-scale Mesh Network Performance Investigation. In
Proc. of IEEE WCNC 2022. 108–113. https://doi.org/10.1109/WCNC51071.2022.
9771708

[18] Tie Qiu, Xize Liu, Min Han, Huansheng Ning, and Dapeng Oliver Wu. 2017.
A Secure Time Synchronization Protocol Against Fake Timestamps for Large-
Scale Internet of Things. IEEE Internet of Things Journal 4, 6 (2017), 1879–1889.
https://doi.org/10.1109/JIOT.2017.2714904

[19] Tanya Roosta, Wei-Chieh Liao, Wei-Chung Teng, and Shankar Sastry. 2008.
Testbed Implementation of a Secure Flooding Time Synchronization Protocol. In
Proc. of IEEE WCNC 2008. 3157–3162. https://doi.org/10.1109/WCNC.2008.551

[20] Nordic Semiconductors. 2019. nRF52840 Product Specification, v1.1. Retrieved
2022-06-15 from https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf

[21] Doug Whiting, Russ Housley, and Niels Ferguson. 2003. Counter with CBC-MAC
(CCM). RFC 3610. RFC Editor.

[22] Longfei Wu, Xiaojiang Du, Wei Wang, and Bin Lin. 2018. An Out-of-band
Authentication Scheme for Internet of Things Using Blockchain Technology.
In Proc. of Int. Conf. ICNC 2018. 769–773. https://doi.org/10.1109/ICCNC.2018.
8390280

[23] Yulong Zou, Jia Zhu, XianbinWang, and Lajos Hanzo. 2016. A Survey onWireless
Security: Technical Challenges, Recent Advances, and Future Trends. Proc. of the
IEEE 104, 9 (2016), 1727–1765.

https://doi.org/10.1109/ACCESS.2020.2985932
https://doi.org/10.1109/WiMOB.2011.6085415
https://doi.org/10.1109/CADS.2010.5623530
https://doi.org/10.1109/MASS.2011.64
https://doi.org/10.1109/MASS.2011.64
https://doi.org/10.3390/computers10120162
https://doi.org/10.3390/computers10120162
https://doi.org/10.1109/IACS.2019.8809115
https://doi.org/10.1109/IWBIS.2017.8275112
https://doi.org/10.1109/IWBIS.2017.8275112
https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/10.1109/HPCC.and.EUC.2013.170
https://doi.org/10.1109/CTTE.2017.8260940
https://doi.org/10.1109/CTTE.2017.8260940
https://doi.org/10.1109/WCNC51071.2022.9771708
https://doi.org/10.1109/WCNC51071.2022.9771708
https://doi.org/10.1109/JIOT.2017.2714904
https://doi.org/10.1109/WCNC.2008.551
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf
https://doi.org/10.1109/ICCNC.2018.8390280
https://doi.org/10.1109/ICCNC.2018.8390280

	Abstract
	1 Introduction
	2 Synchronous Flooding and Security
	2.1 Network Synchronisation and SF
	2.2 Atomic SF and Data Transfer Modes
	2.3 Network Join and Channel Hopping
	2.4 Wireless Security for SF
	2.5 The Challenge of Time Drifting in SF
	2.6 IVs and Nonces

	3 Design and Implementation
	3.1 CCM On-the-fly
	3.2 Synchronising the IVs
	3.3 Double Encryption through Device Keys
	3.4 Joining a Secure Network
	3.5 Implementation Considerations

	4 Experimental Investigation
	4.1 Results and Discussion
	4.2 Benefits of Security

	5 Conclusions
	Acknowledgments
	References

